CSC 321 Computer Graphics

Points, Vectors, and Shapes

Points and Vectors

- Same representation

$$
\{x, y\}(\operatorname{or}\{x, y, z\})
$$

Different meaning:

- Point: a fixed location (relative to $\{0,0\}$ or $\{0,0,0\}$)
- Coordinates change as location changes
- Vector: a direction and length
- Coordinates do not change as location changes

Points and Vectors

- Same representation

```
{x,y} (or {x,y,z})
```

Different meaning:

- Point: a fixed location (relative to $\{0,0\}$ or $\{0,0,0\}$)
- Coordinates change as location changes
- Vector: a direction and length
- Coordinates do not change as location changes

Point Operations

- Subtraction
- Result is a vector

$$
p_{2}-p_{1}=v=\left\{p_{2_{x}}-p_{1_{x}}, p_{2_{y}}-p_{1_{y}}\right\}
$$

- Addition with a vector
- Result is a point

$$
p_{1}+v=p_{2}=\left\{p_{1_{\mathrm{x}}}+v_{\mathrm{x}}, \mathrm{p}_{1_{\mathrm{y}}}+\mathrm{v}_{\mathrm{y}}\right\} \quad \mathrm{p}_{1}
$$

Point Operations

- Addition with a vector
- Resulting location does not change with the origin

Point Operations

- Addition with a vector
- Resulting location does not change with the origin

Point Operations

- Can two points add?

Point Operations

- Can two points add?
- In general, no: result is dependent on where the origin is
- But there are exceptions; will discuss later

Vector Operations

- Addition/Subtraction
- Result is a vector

$$
v_{1} \pm v_{2}=\left\{v_{1_{x}} \pm v_{2_{x}}, v_{1_{y}} \pm v_{2_{y}}\right\}
$$

- Scaling by a scalar
- Result is a vector

$$
s * v=\left\{s * v_{x}, s * v_{y}\right\}
$$

- Magnitude
- Result is a scalar
$|v|=\sqrt{v_{x}{ }^{2}+v_{y}{ }^{2}}$

- A unit vector: | v | = 1
- To make a unit vector (normalization): $\frac{\mathrm{v}}{|\mathrm{v}|}$

Vector Operations

- Dot product
- Result is a scalar

$$
v_{1} \cdot v_{2}=\left|v_{1}\right|\left|v_{2}\right| \operatorname{Cos}[\alpha]
$$

- In coordinates (simple!)
- 2D: $\mathrm{v}_{1} \cdot \mathrm{v}_{2}=\mathrm{v}_{1_{\mathrm{x}}} * \mathrm{v}_{2_{\mathrm{x}}}+\mathrm{v}_{1_{\mathrm{y}}} * \mathrm{v}_{2_{\mathrm{y}}}$

- 3D: $\mathrm{v}_{1} \cdot \mathrm{v}_{2}=\mathrm{v}_{1_{\mathrm{x}}} * \mathrm{v}_{2_{\mathrm{x}}}+\mathrm{v}_{1_{\mathrm{y}}} * \mathrm{v}_{2_{\mathrm{y}}}+\mathrm{v}_{1_{\mathrm{z}}} * \mathrm{v}_{2_{\mathrm{z}}}$
- Matrix product between a row and a column vector

Vector Operations

- Uses of dot products
- Angle between vectors:

$$
\begin{gathered}
\alpha=\operatorname{ArcCos}\left[\frac{\mathrm{v}_{1} \cdot \mathrm{v}_{2}}{\left|\mathrm{v}_{1}\right| *\left|\mathrm{v}_{2}\right|}\right] \\
\text { - Orthogonal: } \mathrm{v}_{1} \cdot \mathrm{v}_{2}=0
\end{gathered}
$$

- Projected length of v_{1} onto $\mathrm{v}_{\mathbf{2}}$:

$$
\mathrm{h}=\frac{\mathrm{v}_{1} \cdot \mathrm{v}_{2}}{\left|\mathrm{v}_{2}\right|}
$$

Vector Operations

- Cross product (in 3D)
- Result is another 3D vector
- Direction: Normal to the plane where both vectors lie (right-hand rule)
- Magnitude: $\left|\mathrm{v}_{1} \times \mathrm{v}_{2}\right|=\left|\mathrm{v}_{1}\right|\left|\mathrm{v}_{2}\right| \sin [\alpha]$
- In coordinates:
- Determinant of a matrix:

$$
\left(\begin{array}{ccc}
i & j & k \\
v_{1_{x}} & v_{1_{y}} & v_{1_{z}} \\
v_{2_{x}} & v_{2_{y}} & v_{2_{z}}
\end{array}\right)
$$

$$
\begin{aligned}
& v_{1} \times v_{2}=\{ \\
& \left.v_{1_{y}} v_{2_{z}}-v_{1_{z}} v_{2_{y}}, v_{1_{z}} v_{2_{x}}-v_{1_{x}} v_{2_{z}}, v_{1_{x}} v_{2_{y}}-v_{1_{y}} v_{2_{x}}\right\}
\end{aligned}
$$

Vector Operations

- Uses of cross products
- Getting the normal vector of the plane
- E.g., the normal of a triangle formed by $\mathrm{v}_{1} \mathrm{v}_{2}$
- Computing area of the triangle formed by $\mathrm{v}_{1} \mathrm{v}_{2}$

$$
\text { Area }=\frac{\left|v_{1} \times v_{2}\right|}{2}
$$

- Testing if vectors are parallel: $\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|=0$

Vector Operations

	Dot Product	Cross Product
Distributive?	$\mathbf{v} \cdot\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=$ $\mathbf{v} \cdot \mathbf{v}_{1}+\mathbf{v} \cdot \mathbf{v}_{2}$	$\mathbf{v} \times\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=$ $\mathbf{v} \times \mathbf{v}_{1}+\mathbf{v} \times \mathbf{v}_{2}$
Commutative?	$\mathbf{v}_{1} \cdot \mathbf{v}_{2}=\mathbf{v}_{2} \cdot \mathbf{v}_{1}$	$\mathbf{v}_{1} \times \mathbf{v}_{2}=-\mathbf{v}_{2} \times \mathbf{v}_{1}$ $($ Sign change! $)$
Associative?	$\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)$	$\mathbf{v}_{1} \times\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right) \neq$ $\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right) \times \mathbf{v}_{3}$

Shapes and Dimensions

- 0-dimensional shape: point
- No length or area
- 1-dimensional shape: curve
- Has non-zero "length"
- Examples: line (segment), circle (arc), parabola, etc.

- 2-dimensional shape: surface
- Has non-zero "area"
- Examples: filled triangle or quad, filled circle,
 surface of a cylinder, surface of a sphere, etc.

Tessellation

- Graphics cards are good at drawing tessellated elements
- E.g., line segments, triangles, etc.

1D Tessellation

- Approximate a 1D curve shape by line segments
- Define the curve as a function of one parameter
- Generate samples on the curve at fixed intervals of the parameter
- Connect successive samples by line segments

Parameterizing 1D Shapes

- A line segment:

$$
\mathrm{p}[\mathrm{t}]=(1-\mathrm{t}) \mathrm{p}_{1}+\mathrm{t} \mathrm{p}_{2} \quad 0 \leq \mathrm{t} \leq 1
$$

p_{1}

Can Points Add? Sometimes.

Linear interpolation (for two points)

$$
p=(1-t) p_{1}+t p_{2}
$$

- For any t, location of p is invariant to origin change
- It is basically a point-and-vector addition:

$$
\mathrm{p}=\mathrm{p}_{1}+\mathrm{t}\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)
$$

Can Points Add? Sometimes.

- Affine combinations (for multiple points)

$$
\mathrm{p}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}, \quad \text { where } \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}}=1
$$

- For any t_{i}, location of p is invariant to origin change
- Again, a point-and-vector addition:

$$
p=p_{1}+\sum_{i=1}^{n} t_{i}\left(p_{i}-p_{1}\right)
$$

Parameterizing 1D Shapes

- A line segment:

$$
p[t]=(1-t) p_{1}+t p_{2} \quad 0 \leq t \leq 1
$$

Parameterizing 1D Shapes

- Circle
- Centered at origin with radius r

$$
\begin{aligned}
& \mathrm{p}[\alpha]=\{\mathrm{r} \operatorname{Cos}[\alpha], r \sin [\alpha]\} \\
& 0 \leq \alpha<2 \pi
\end{aligned}
$$

Parameterizing 1D Shapes

$$
\begin{aligned}
& \text { Ellipse } \\
& \text { - Centered at origin with axes } a, b \\
& p[\alpha]=\{a \cos [\alpha], b \sin [\alpha]\} \\
& 0 \leq \alpha<2 \pi
\end{aligned}
$$

2D Tessellation

- Approximate a 2D surface shape by triangles
- Define the surface as a function of two parameters
- Generate samples at fixed intervals of both parameters
- Connect samples by triangles

Parameterizing 2D Shapes

- Filled disk
- Centered at origin with radius r

$$
\begin{aligned}
& p[d, \alpha]=\{d \operatorname{Cos}[\alpha], d \operatorname{Sin}[\alpha]\} \\
& 0 \leq d \leq r, 0 \leq \alpha<2 \pi
\end{aligned}
$$

Parameterizing 2D Shapes

- Filled quad

$$
\begin{aligned}
& q[u]=(1-u) p_{1}+u p_{2} \\
& r[u]=(1-u) p_{3}+u p_{4} \\
& p[u, v]=(1-v) q[u]+v r[u] \\
& 0 \leq u \leq 1, \quad 0 \leq v \leq 1
\end{aligned}
$$

Parameterizing 2D Shapes

- Filled triangle

$$
\begin{aligned}
& q[u]=(1-u) p_{1}+u p_{2} \\
& p[u, v]=(1-v) q[u]+v p_{3} \\
& 0 \leq u \leq 1,0 \leq v \leq 1
\end{aligned}
$$

Parameterizing 2D Shapes

- Outer surface of a cylinder
- Base centered at origin
- Radius r, height h
$p[d, \alpha]=\{r \operatorname{Cos}[\alpha], r \operatorname{Sin}[\alpha], d\}$
$0 \leq \mathrm{d} \leq \mathrm{h}, 0 \leq \alpha<2 \pi$

Parameterizing 2D Shapes

- Cone surface
- Base centered at origin
- Radius r, height h

$$
\begin{aligned}
& \mathrm{p}[\mathrm{~d}, \alpha]=\{\mathrm{g} \cos [\alpha], g \sin [\alpha], d\} \\
& \mathrm{g}=\frac{\mathrm{r}(\mathrm{~h}-\mathrm{d})}{\mathrm{h}} \\
& 0 \leq \mathrm{d} \leq \mathrm{h}, 0 \leq \alpha<2 \pi
\end{aligned}
$$

Parameterizing 2D Shapes

- Sphere surface
- Centered at origin with radius r

$$
\mathrm{p}[\alpha, \beta]=\{\mathrm{r} \operatorname{Cos}[\beta] \operatorname{Cos}[\alpha], \mathrm{r} \operatorname{Cos}[\beta] \operatorname{Sin}[\alpha], \mathrm{r} \operatorname{Sin}[\beta]\}
$$

$0 \leq \alpha<2 \pi, \frac{-\pi}{2} \leq \beta \leq \frac{\pi}{2}$

- Not the best parameterization...

