CSC 321 Computer Graphics

Points, Vectors, and Shapes
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Points and Vectors

Same representation v
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{x, y} (oxr {x, ¥y, 2})

L J

Different meaning: 15

Point: a fixed location (relative to {0,0} or {0,0,0})
Coordinates change as location changes

Vector: a direction and length

Coordinates do not change as location changes
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Points and Vectors

Same representation Y
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Different meaning: 1 7

Point: a fixed location (relative to {0,0} or {0,0,0})
Coordinates change as location changes

Vector: a direction and length

Coordinates do not change as location changes
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Point Operations

Subtraction

Result is a vector

P2-P1=V= {sz - Piys P2y ‘Ply}

Addition with a vector

Result is a point

P1+V =Pz = {P1, + Vx, P1, + Vy] P1
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Point Operations

Addition with a vector

Resulting location does not change with the origin

p+v
R 0 (X;+Xy, Y1+Y5)
V
(X2,Y2)
P
o (Xq,Y1)
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Point Operations

Addition with a vector

Resulting location does not change with the origin

p+v
®
\Y; (X1 +X,t+a, y +y,+b)
4 (X2,Y2)

o O

(X;+a,y;+b)
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Point Operations

Can two points add?

A p1+p2
P1 o (X1+X,, Y1+Y5)
e (X1,Y1)

2
© (X3,Y>)
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Point Operations

Can two points add?

In general, no: result is dependent on where the origin is

But there are exceptions; will discuss later

P1+P;

® (X;+X,+2a, y,+y,+2b)

Py ©

° (X, +X*a, Y, +Y,+D)

(x,+a,y,+b) gz

(X,+a,y,+h)

\ 4

O v
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Vector Operations

Addition/Subtraction

Result is a vector

V1 xVvy = {le Vo, Vly s VQy}

Scaling by a scalar

Result is a vector
sS*V={S*xVx, S*xVy}

Magnitude s¥Xv
v
Result is a scalar
| v | =‘\/*s.rx2+"r.ry2
Aunitvector: | v |1 =1
Vv

To make a unit vector (normalization): | v |
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Vector Operations

Dot product

Result is a scalar

vy Vo= | vy |] v | Cos[a]
Vi
In coordinates (simplel) a
2D: vy - vo = vy *k V2, + Vi, * Va2 V2

3D: vq -Vy = Vig ¥ Vo  + Vly *VQY + Vi, ¥Vo,

Matrix product between a row and a column vector
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Vector Operations

Uses of dot products

Angle between vectors:

Vi1 - Vo
a = ArcCos [ ]
| Vi | * I Vo I

Orthogonal: vq1 - vo = 0

Projected length of v; onto v;

V1 - V2
h= —
iv2|
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Vector Operations

Cross product (in 3D)

Result is another 3D vector
Direction: Normal to the plane where both vectors lie (right-hand rule)

Magnitude: | vy xva |l = | vi || v2 | Sin[a]

In coordinates:

™
Determinant of a matrix: %
i 3 k P
Vig Viy Vi, >
V2x V2, V2,

V1 XVs2 ={

Vi, V2, - Vi Voo, Vi V2, - Vi, V2 , Vi, V2, - Vi, V2, }
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Vector Operations

Uses of cross products

Getting the normal vector of the plane

E.g., the normal of a triangle formed by v, v2

Computing area of the triangle formed by v, v,

| v xvo |

Area =
2

Testing if vectors are parallel: | vy xvo | =
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Vector Operations

Dot Product

Cross Product

Distributive?

V- (Ve +Vy) =

V: V1 +V Vs

vXx(vy+vVvy) =

VXV, + VXVo

Commutative?

Vi V2 =Vy -V

Vi XVy = =V XV
(Sign changel)

Associative?

V1 X (V2 xV3) #
(Vi XVv2) XV3
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Shapes and Dimensions

O-dimensional shape: point

No length or area

1-dimensional shape: curve

Has non-zero “length”
Examples: line (segment), circle (arc), f
parabola, etc.

2-dimensional shape: surface

Has non-zero “area” ‘
Examples: filled triangle or quad, filled circle,

surface of a cylinder, surface of a sphere, etc.
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Tessellation

Graphics cards are good at drawing tessellated elements

E.g., line segments, triangles, etc.
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1D Tessellation

Approximate a 1D curve shape by line segments

Define the curve as a function of one parameter

Generate samples on the curve at fixed intervals of the parameter

Connect successive samples by line segments

f(1)

f(0)

f(t) — g

CSC 321 Points, Vectors, and Shapes Slide 17



Parameterizing 1D Shapes

A line segment:

plt] = (1-t) p1 + £tp, 0 t=< 1
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Can Points Add? Sometimes.

Linear interpolation (for two points)

Pp=(1-t)p1+tp:

For any t, location of p is invariant to origin change

It is basically a point-and-vector addition:

p=p1+t(p2-p1)
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Can Points Add? Sometimes.

Affine combinations (for multiple points)

n n
p=Ztipi, WhereZti=l
i=1 i=1

For any t; location of p is invariant to origin change

Again, a point-and-vector addition:

Il
P =P1+Zti (Pi - P1)
i=1
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Parameterizing 1D Shapes

A line segment:

pl[t] = (1-t) p1 + tPp2 0 t=< 1
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Parameterizing 1D Shapes

Circle

—~gP [2]
Centered at origin with radius r ﬁ:
r"' AN

pl[a] = {rCos[a], rSin[a]} kj

O a2
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Parameterizing 1D Shapes

Ellipse

Centered at origin with axes a, b /;\'\
A
. .
pl[a] = {aCos[a], bSin[a]} \/

OL a2
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2D Tessellation

*  Approximate a 2D surface shape by triangles

— |Define the surface as a function of two parameters

— Generate samples at fixed intervals of both parameters

— Connect samples by triangles

£(0.1,0.2)

ﬁ lf(O.Z,O.Z)

f0.1,01)  10-20.1)
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Parameterizing 2D Shapes

* Filled disk

— Centered at origin with radius r

p[d, a] = {dCos[a], dSin[a]}

O<d=<r, 0zsa<2r
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Parameterizing 2D Shapes

.

P1

* Filled quad

qglu] = (1-u) p1 +upz

r[fu] = (1-u) p3+upy

plu, v] = (1 -v) gq[u] + v r[u]
O<u<l, 0sv<l
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Parameterizing 2D Shapes

* Filled triangle

qg[u] = (1-u) p1 +up2

plu, v] = (1 -v) q[u] +vps
O<u=<l, 0=sv<sl
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Parameterizing 2D Shapes

Outer surface of a cylinder

Base centered at origin
Radius r, height h

p[d, a] = {rCos[a], rSin[a], 4}
0<d<h,O0<a<2rm

A
v
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Parameterizing 2D Shapes

Cone surface

Base centered at origin + Z
Radius r, height h

P[d! CX] = {gCOS[CX] ’ gSin[cx] , d}

r (h-4d)
g:
h
0<d<h,O0=<a<2rm T
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Parameterizing 2D Shapes

Sphere surface

Centered at origin with radius r

pla, B] = {rCos[fB] Cos[a], rCos[B] Sin[a], rSin[B]}

- JT
O<a<2rm, ?Eﬁﬂ

NI

Not the best parameterization... ﬁ
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