CSC 321 Computer Graphics

Points, Vectors, and Shapes

Points and Vectors

Same representation

$$\{x, y\} (or \{x, y, z\})$$

- Different meaning:
 - Point: a fixed **location** (relative to {0,0} or {0,0,0})
 - Coordinates change as location changes
 - Vector: a direction and length
 - Coordinates do not change as location changes

Points and Vectors

Same representation

$$\{x, y\} (or \{x, y, z\})$$

- Different meaning:
 - Point: a fixed **location** (relative to {0,0} or {0,0,0})
 - Coordinates change as location changes
 - Vector: a direction and length
 - Coordinates do not change as location changes

- Subtraction
 - Result is a vector

$$p_2 - p_1 = v = \{p_{2_x} - p_{1_x}, p_{2_y} - p_{1_y}\}$$

- Addition with a vector
 - Result is a point

$$p_1 + v = p_2 = \{p_{1_x} + v_x, p_{1_y} + v_y\}$$

- Addition with a vector
 - Resulting location does not change with the origin

- Addition with a vector
 - Resulting location does not change with the origin

Can two points add?

- Can two points add?
 - In general, no: result is dependent on where the origin is
 - But there are exceptions; will discuss later

Addition/Subtraction

- Result is a vector $\mathbf{v}_1 \pm \mathbf{v}_2 = \left\{ \mathbf{v}_{1_x} \pm \mathbf{v}_{2_x}, \ \mathbf{v}_{1_y} \pm \mathbf{v}_{2_y} \right\}$

- Result is a scalar $| v | = \sqrt{v_x^2 + v_v^2}$

- A unit vector: | v | = 1
- To make a unit vector (normalization): T v l

Dot product

Result is a scalar

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = |\mathbf{v}_1| |\mathbf{v}_2| \cos[\alpha]$$

- In coordinates (simple!)
 - 2D: $\mathbf{v_1} \cdot \mathbf{v_2} = \mathbf{v_{1_x}} * \mathbf{v_{2_x}} + \mathbf{v_{1_y}} * \mathbf{v_{2_y}}$
 - 3D: $v_1 \cdot v_2 = v_{1_x} * v_{2_x} + v_{1_y} * v_{2_y} + v_{1_z} * v_{2_z}$
 - Matrix product between a row and a column vector

- Uses of dot products
 - Angle between vectors:

$$\alpha = \operatorname{ArcCos}\left[\frac{v_1 \cdot v_2}{\mid v_1 \mid \star \mid v_2 \mid}\right]$$

• Orthogonal: $\mathbf{v}_1 \cdot \mathbf{v}_2 = \mathbf{0}$

$$h = \frac{v_1 \cdot v_2}{|v_2|}$$

- Cross product (in 3D)
 - Result is another 3D vector
 - Direction: Normal to the plane where both vectors lie (right-hand rule)
 - Magnitude: $|\mathbf{v}_1 \times \mathbf{v}_2| = |\mathbf{v}_1| |\mathbf{v}_2| \operatorname{Sin}[\alpha]$
 - In coordinates:
 - Determinant of a matrix:

$$\begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{v_{1_{x}}} & \mathbf{v_{1_{y}}} & \mathbf{v_{1_{z}}} \\ \mathbf{v_{2_{x}}} & \mathbf{v_{2_{y}}} & \mathbf{v_{2_{z}}} \end{pmatrix}$$

$$v_{1} \times v_{2} = \left\{ \\ v_{1_{y}} \ v_{2_{z}} - v_{1_{z}} \ v_{2_{y}}, \ v_{1_{z}} \ v_{2_{x}} - v_{1_{x}} \ v_{2_{z}}, \ v_{1_{x}} \ v_{2_{y}} - v_{1_{y}} \ v_{2_{x}} \right\}$$

- Uses of cross products
 - Getting the normal vector of the plane
 - E.g., the normal of a triangle formed by $v_1 v_2$
 - Computing area of the triangle formed by v₁ v₂

Area =
$$\frac{\mid v_1 \times v_2 \mid}{2}$$

• Testing if vectors are parallel: $| \mathbf{v}_1 \times \mathbf{v}_2 | = 0$

	Dot Product	Cross Product
Distributive?	$\mathbf{v} \cdot (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{v} \cdot \mathbf{v}_1 + \mathbf{v} \cdot \mathbf{v}_2$	$\mathbf{v} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{v} \times \mathbf{v}_1 + \mathbf{v} \times \mathbf{v}_2$
Commutative?	$\mathbf{v}_1 \cdot \mathbf{v}_2 = \mathbf{v}_2 \cdot \mathbf{v}_1$	$\mathbf{v}_1 \times \mathbf{v}_2 = -\mathbf{v}_2 \times \mathbf{v}_1$ (Sign change!)
Associative?	$\mathbf{v_1} \cdot (\mathbf{v_2} \cdot \mathbf{v_3})$	$\mathbf{v}_1 \times (\mathbf{v}_2 \times \mathbf{v}_3) \neq$ $(\mathbf{v}_1 \times \mathbf{v}_2) \times \mathbf{v}_3$

Shapes and Dimensions

- 0-dimensional shape: point
 - No length or area
- 1-dimensional shape: curve
 - Has non-zero "length"
 - Examples: line (segment), circle (arc), parabola, etc.
- 2-dimensional shape: surface
 - Has non-zero "area"
 - Examples: filled triangle or quad, filled circle, surface of a cylinder, surface of a sphere, etc.

Tessellation

- Graphics cards are good at drawing tessellated elements
 - E.g., line segments, triangles, etc.

1D Tessellation

- Approximate a 1D curve shape by line segments
 - Define the curve as a function of one parameter
 - Generate samples on the curve at fixed intervals of the parameter
 - Connect successive samples by line segments

A line segment:

$$p[t] = (1 - t) p_1 + t p_2$$
 $0 \le t \le 1$

Can Points Add? Sometimes.

Linear interpolation (for two points)

$$p = (1 - t) p_1 + t p_2$$

- For any t, location of p is invariant to origin change
 - It is basically a point-and-vector addition:

$$p = p_1 + t (p_2 - p_1)$$

Can Points Add? Sometimes.

Affine combinations (for multiple points)

$$p = \sum_{i=1}^{n} t_i p_i$$
, where $\sum_{i=1}^{n} t_i = 1$

- For any t_{i.} location of p is invariant to origin change
 - Again, a point-and-vector addition:

$$p = p_1 + \sum_{i=1}^{n} t_i (p_i - p_1)$$

A line segment:

$$p[t] = (1 - t) p_1 + t p_2 0 \le t \le 1$$

Circle

Centered at origin with radius r

$$p[\alpha] = \{rCos[\alpha], rSin[\alpha]\}$$

 $0 \le \alpha < 2\pi$

Ellipse

Centered at origin with axes a, b

$$p[\alpha] = \{a Cos[\alpha], b Sin[\alpha]\}$$

 $0 \le \alpha < 2\pi$

2D Tessellation

- Approximate a 2D surface shape by triangles
 - Define the surface as a function of two parameters
 - Generate samples at fixed intervals of both parameters
 - Connect samples by triangles

- Filled disk
 - Centered at origin with radius r

$$p[d, \alpha] = \{dCos[\alpha], dSin[\alpha]\}$$

 $0 \le d \le r, 0 \le \alpha < 2\pi$

Filled quad

r[u]

p[u, v]

 \mathbf{p}_3

v

P4

Filled triangle

$$q[u] = (1 - u) p_1 + u p_2$$

 $p[u, v] = (1 - v) q[u] + v p_3$
 $0 \le u \le 1, 0 \le v \le 1$

- Outer surface of a cylinder
 - Base centered at origin
 - Radius r, height h

$$p[d, \alpha] = \{rCos[\alpha], rSin[\alpha], d\}$$

 $0 \le d \le h, 0 \le \alpha < 2\pi$

Cone surface

- Base centered at origin
- Radius r, height h

$$p[d, \alpha] = \{gCos[\alpha], gSin[\alpha], d\}$$
$$g = \frac{r(h-d)}{h}$$

 $0 \le d \le h$, $0 \le \alpha < 2\pi$

- Sphere surface
 - Centered at origin with radius r

$$p[\alpha, \beta] = \{r Cos[\beta] Cos[\alpha], r Cos[\beta] Sin[\alpha], r Sin[\beta]\}$$

$$0 \le \alpha < 2\pi, \ \frac{-\pi}{2} \le \beta \le \frac{\pi}{2}$$

Not the best parameterization...

