

For credit on these problems, you must show your work. On this exam, take the natural numbers to be $N = \{0, 1, 2, 3, \dots\}$. This exam is closed book and closed notes. Calculators are allowed. 100 pts. possible.

1. (8 pts.) State one of DeMorgan's Laws for symbolic logic. Prove this, using a truth table.

$$\neg(p \wedge q) \equiv \neg p \vee \neg q$$

$p \wedge q$	$\neg(p \wedge q)$	$\neg p \vee \neg q$
TT	F	T
TF	T	F
FT	T	F
FF	T	T

tautology so
this gives \equiv

2. (10 pts.) Give a deduction for the following hypothesis and conclusion, justifying each step. Use these predicates: $W(x)$: x is on the webteam, $C(x)$: x is a coder, $D(x)$: x is a designer, $M(x)$: x drinks Mountain Dew, domain: All people.

Hypothesis: Everyone on the webteam either is a coder or a designer. Carolina, who is on the webteam, isn't a designer. Everyone who is a coder drinks Mountain Dew. Conclusion: Carolina drinks Mountain Dew.

1. $\forall x (W(x) \rightarrow (C(x) \vee D(x)))$ given
2. $W(c) \wedge \neg D(c)$ given c is Carolina
3. $\forall x (C(x) \rightarrow M(x))$ given
4. $W(c) \rightarrow C(c) \vee D(c)$ 1, UI
5. $W(c)$ 2, SIMP
6. $C(c) \vee D(c)$ 4, 5, MP
7. $\neg D(c)$ 2, SIMP
8. $C(c)$ 7, 6, D.S.
9. $C(c) \rightarrow M(c)$ 3, UI
10. $M(c)$ 9, 8, MP

3. (9 pts.) Let $L(x,y)$ be the predicate: "x likes y", where the domains are given by: x is a CS student and y is a kind of food. Let $D(x)$ be the predicate: x is a student in this discrete class, where the domain is all CS students

Express the following statements using those predicates and any required quantifiers; you may not use the "there exists unique" quantifier.

a. Every CS student likes some kind of food.

$$\forall x \exists y (L(x,y))$$

b. Every student in this discrete class likes grilled cheese sandwiches.

$$\forall x (D(x) \rightarrow L(x, GCS))$$

c. There is exactly one CS student who likes tofu. (You may **not** use there exist unique quantifier.)

$$\exists x ((L(x, \text{tofu})) \wedge \forall y (x \neq y \rightarrow \neg L(y, \text{tofu})))$$

d. Express the negation of the logical expression in **part b** with the negation moved as far inside as possible.

$$\exists x (D(x) \wedge \neg L(x, GCS))$$

4. (2 pts. each) Let $P(m,n)$ be the predicate "m + n is even" where the domain for each is the set \mathbb{N} .

a. What is the truth value of $\forall m \exists n (P(m,n))$? Justify.

True if m even ~~choose~~ n even
 " " odd " " odd

b. What is the truth value of $\exists m \forall n (P(m,n))$? Justify.

false There is no number that is you
 add any number to it, the result is even.

c. What is the truth value of $\forall m \forall n ((m = n) \rightarrow P(m,n))$? Justify.

True any number added to itself is even.

5. (8 pts.) Let $g: \mathbb{N} \rightarrow \mathbb{O}$, where \mathbb{O} is the set of odd natural numbers, be given by the rule $g(n) = 2n+1$.

- Carefully prove or disprove g is 1-1.

Suppose $n_1, n_2 \in \mathbb{N}$ and $g(n_1) = g(n_2)$
 Then $2n_1 + 1 = 2n_2 + 1$. So $2n_1 = 2n_2$ and
 $n_1 = n_2$. Thus g is 1-1.

- Is g onto? Justify your answer.

yes, every odd number is hit with
 this formula.

6. (6 pts.) Let B be the set of all bit strings and $f: B \rightarrow \mathbb{Z}$ be defined by the number of 0's in the bit string minus the number of 1's.

- Is f 1-1? Briefly justify your answer

no $0 \rightarrow 1$
 $010 \rightarrow 1$

- Is f onto? Briefly justify your answer.

yes. To hit $n \geq 0$, choose n 0's.
 To hit $n < 0$, choose n 1's.

7. (3 pts. each) Give an example of the following. Carefully justify that your example satisfies the given conditions. If no example exists, state this and briefly explain why.

- A set A such that $|\mathcal{P}(A)| = 5$.

No example exist. Card. of powerset is
 a power of 2.

- A set that satisfies the predicate $A \notin A$.

$\{\} \notin \{\}$.

- A pair of sets A and B with $A \subset B$ and a function $f: A \rightarrow B$ that is 1-1 and onto.

$\{1, 2, 3, \dots\} \subset \{0, 1, 2, \dots\}$
 $f(n) = n-1$ is 1-1 & onto

8. (6 pts.) Suppose we are using a bit string representation of sets where the universal set is $\{1, 2, 3, 4\}$.

a. Represent \emptyset .

0000

b. Let $A = \{1, 2\}$. Represent A .

1100

9. (6 pts.) a. In the 5th century BCE Hippasus of Metapontum discovered his famous proof that the square root of 2 is irrational. What is the first sentence of his proof?

Suppose $\sqrt{2}$ is rational.

b. Suppose you are going to prove the theorem: If x^3 is irrational, then x is irrational. If you choose to prove this using an indirect proof, what is the first sentence of your proof? (Do not complete this proof.)

Suppose x is rational.

c. Suppose you are going to prove the theorem: For any sets A and B , $A \cup (B - A) \subseteq A \cup B$. What is the first sentence of your proof? (Do not complete this proof.)

Suppose $x \in A \cup (B - A)$

10. (2 pts. each) True or false—circle one. No need to justify your answers.

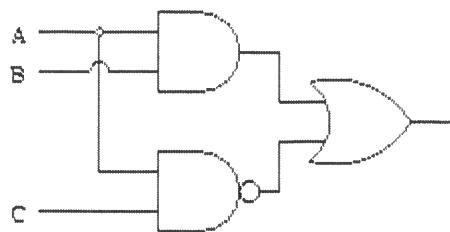
True False a. For any real numbers x and y , $\lceil x \rceil + \lceil y \rceil = \lceil x + y \rceil$

True False b. Given any two sets A and B , $|A - B| = |B - A|$.

True False c. For any set A , $\emptyset \in A$.

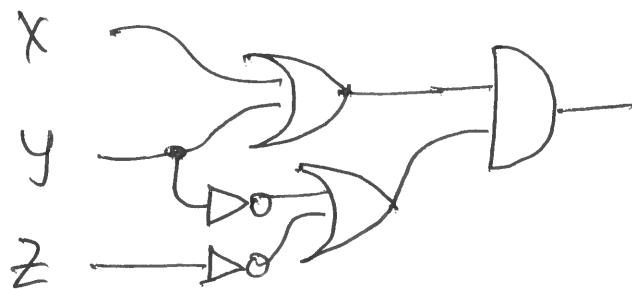
True False d. $\{\wedge, \neg\}$ is a logically complete set of logical operators.

11. (4pts. each) a. Give the Boolean algebra expression for the following circuit:



$$AB + \overline{AC}$$

b. Draw a circuit for the following Boolean algebra expression: $(x + y)(\bar{z} + \bar{y})$



12. (6 pts.) Produce the disjunctive normal form for the Boolean function f given here:

p	q	r	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$\overline{p}\overline{q}\overline{r} + \overline{p}q\overline{r} + \overline{p}qr$$

13. (8 pts.) Let $A = \{3, 4, \{3, 4\}, \{1, 2, 3\}, 5\}$ and $B = \{3, 4\}$

a. What is $|A|?$ 5

b. Is $B \subset A?$ yes

c. Is $B \in A?$ yes

d. What is $|B \times B|?$ 4

