
A Learning Platform for SQL Injection
Nada Basit

University of Virginia
basit@virginia.edu

Abdeltawab Hendawi
University of Virginia
hendawi@virginia.edu

Joseph Chen
University of Virginia
jmc2fz@virginia.edu

Alexander Sun
University of Virginia
ahs9vt@virginia.edu

ABSTRACT
We present a web application system where users can learn about
and practice SQL injection attacks. Our system is designed for
students in a university level database or computer security class,
and is aimed towards students familiar with SQL but with little
experience in web security. Our platform currently contains 12
levels, each of which demonstrates a SQL vulnerability that the user
must exploit. For each level, we explain the goal of the challenge,
and also provide detailed solutions. Our system provides advantages
over other methods of teaching SQL injection because it is hands-
on, the challenges provide a greater scope of vulnerability coverage,
and is easily extensible, allowing instructors to add their own SQL
injection problems for their students.

CCS CONCEPTS
• Security and privacy → Database and storage security; •
Applied computing → Interactive learning environments;

KEYWORDS
SQL injection; database security; learning tool; education

ACM Reference Format:
Nada Basit, Abdeltawab Hendawi, Joseph Chen, and Alexander Sun. 2019.
A Learning Platform for SQL Injection. In SIGCSE ’19: 50th ACM Tech-
nical Symposium on Computer Science Education, February 27–March 2,
2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3287324.3287490

1 INTRODUCTION
In today’s technology-driven society, website applications have a
predominant role in everyday life. People use websites for online
shopping, banking, communicating with friends, and much more.
Many websites use databases in their backend to store user informa-
tion. Because valuable information such as passwords, credit card
numbers, or social security numbers are stored in those databases,
they become common targets for malicious hackers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/2. . . $15.00
https://doi.org/10.1145/3287324.3287490

One common attack against SQL databases is known as SQL in-
jection. SQL injection is a web vulnerability where malicious users
input carefully crafted SQL statements into a website form. In order
to execute the SQL query, websites often concatenate untrusted
user input with code to be executed. Successful SQL injections
have the potential to read sensitive data from a database or execute
administrator actions [14]. According to the Open Web Applica-
tion Security Project (OWASP), SQL injection is the most critical
web vulnerability [11]. Similarly, according to MITRE's Common
Weakness Enumeration, the most dangerous programming error
is SQL injection [6]. SQL injection attacks have been used in real
world websites on numerous occasions. In as early as 2002, over
200,000 credit card numbers were leaked from Guess.com using a
SQL injection attack [1][10]. The year after, over 500,000 credit card
numbers were leaked from PetCo.com using another SQL injection
attack [7]. In 2013, the hacker group “RedHack" found a SQL injec-
tion vulnerability in the Istanbul Administration Site. They were
able to erase people's debts to water, gas, electricity, and Internet
companies [12]. They also tweeted the injection so that others could
also exploit the vulnerability. Therefore, it is important that web
developers understand the risk that SQL injection poses.

We believe there are two main reasons why SQL injection re-
mains a problem today. One is that some web developers are either
unaware or unconcerned about SQL injection, which causes the
websites they create to be vulnerable. The second is that even if se-
curity is considered, hackers are constantly looking for new attacks
to leverage. Even though there have been many countermeasures
[2][3][4][8], each method begets another method of attack, and
new vulnerabilities are continually being found. Although some
of these vulnerabilities are reported, others go unreported and the
public has no knowledge they exist. These factors make it difficult
to keep our websites secure.

In this paper, we address the problem of SQL injection by de-
scribing a SQL injection learning platform we created. The platform
is a web application that is designed to be used in a classroom set-
ting. It demonstrates the vulnerabilities related to SQL present in
web applications by allowing users to craft their own injections
to hack into intentionally vulnerable databases. Our goal is that
users will understand the importance and consequences of SQL
injection through attempting injections themselves. The platform
aims to address the lack of awareness of SQL injection by teaching
and providing examples of SQL injection, and attempts to address
newer vulnerabilities by being easily extensible. The platform is
centered around a series of levels, which get progressively more
difficult and build off the previous ones. Each level presents a dif-
ferent scenario, along with a vulnerable website form. The user

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

184

https://doi.org/10.1145/3287324.3287490
https://doi.org/10.1145/3287324.3287490
https://doi.org/10.1145/3287324.3287490

must understand the scenario and then craft an appropriate SQL
injection query which will exploit the vulnerability. Users create
their own exploits because we believe a hands-on approach is more
beneficial when conveying the importance of computer security.

Among the work that have tried to teach SQL injection, our
platform differs in that it is user-friendly towards people who are
new to SQL injection and provides extensibility to educators who
want to add new levels. Some sites aim to be a practice tool with
harder challenges without much guidance towards beginners. In
contrast, our site aims to be a simple and effective teaching tool that
starts users with basic challenges and progresses through harder
problems.

We review related work in the area of teaching SQL injection in
Section II. We then discuss an overview of our system, including the
contents and architecture of our system, in Section III. In Section
IV, we explain the extensibility of our system and show how a
professor would add a new challenge to the site. In Section V, we
explore each level, explaining the challenge, goal, and solution for
each one. Finally, we present reflections on our tool in Section VI.

2 RELATEDWORK
Uskov's paper [15] gives an overview of “Software and Web Appli-
cations Security" courses that are based on hands-on teaching of se-
curity topics, one of which is SQL injection. The course framework
first gives an overview of SQL injection, explaining the vulnerabil-
ity and under what circumstances it occurs. Next, a demonstration
of the attack is shown, along with an example of a tautology SQL
injection. The framework then shows how SQL injection can be
prevented and defended against. Finally, the author provides some
hands-on SQL injection assignments for students to try.

The authors in [9] present a survey of SQL injection attacks along
with methods of prevention. They also discuss online practice tools
that aid security professionals in testing their skills. These tools
are similar to the platform that we have developed in that they are
websites intentionally vulnerable to SQL injection and have the
user practice exploiting them. These tools include DVMA (Damn
VulnerableWeb App), Web Security Dojo, and OWASP. The authors
go into the details of the pros and cons of these tools, for example,
they mention that DVMA leaves out hints and explanations of
exercises, how OWASP is completely Java-oriented, ignoring PHP,
and how Web Security Dojo is not user-friendly for beginners to
SQL injection. We took these considerations into account when
designing our platform.

The authors in [13] created a way to teach database security
through mobile labs. Their goal was to broaden mobile security
education, and they built a mobile application for Android that
consisted of several labs on computer security. The modules not
only taught SQL injection but also focused on ethical issues and
explained how to fix the vulnerability.

Chen and Tao [5] developed a teaching tool called SWEET, which
uses virtualization so students can learn and practice web security
in a safe environment. They illustrate most web security threats
through the use of an external application called OWASP WebGoat.
WebGoat contains a series of web challenges that tries to simulate
real life situations such as stealing credit card numbers and logging
into websites as admin. It includes SQL injection challenges that are

friendly to new learners and can be adopted separately for different
courses.

Besides the aforementioned related work, much of the work
that has been done in developing database security curriculums
are based on lectures, and not hands-on activities. However, be-
sides published papers and pedagogical material, there exist several
sites that offer SQL injection challenges. We reviewed a number
of these sites, including SQLZoo, Overthewire, pentesterlab, the
SEED project, the NICE challenge, and Hackme. Overall, we believe
our platform offers two main improvements. First, we designed the
site with extensibility in mind from the beginning. We attempted
to make the process of adding new levels as simple as possible so
that instructors can include their own problems for their students.
The second is that our site is more user-friendly towards students
who are new to SQL injection. Some websites are behind a paywall,
or require users to first set up a virtual environment. In contrast,
our challenges are free to access and are hosted online. Many of
the existing sites are aimed at people who are already familiar with
SQL injection and want to practice, consequently, their challenges
can be unclear or even discouraging to beginners with little experi-
ence in security. Our platform starts with basic injection challenges,
eventually building up to the more advanced ones. Along the way,
we provide step-by-step explanations. Overall, the difference is that
our platform aims to be a teaching tool rather than a practice tool.

3 SYSTEM OVERVIEW
Our system is a web application running on a LAMP (Linux, Apache,
MariaDB, PHP) architecture. The application introduces the user
to SQL injection and challenges users to write their own injections
to solve increasingly difficult SQL injection problems. In addition
to the SQL injection challenges, there is a wiki that guides the
users as they progress through the challenges. The wiki focuses
on conveying the important ideas and methods in SQL injection
attacks, such as intuition for analyzing the situation and how to
utilize SQL commands and syntax to craft exploits to retrieve the
desired information.

Our platform has 12 challenges, each of which introduces a dif-
ferent type of SQL injection or vulnerability. Each of the challenges
is associated with a different database, which contain the tables
necessary to run the challenge. For each level, the website will exe-
cute a provided query that has been combined with the user input,
which is an injection. When running the query, the SQL engine
will fetch data from the corresponding database. The 12 databases
are isolated from each other and are each associated with a Mari-
aDB user that only has SELECT permissions for the corresponding
database.

The process of submitting an injection is displayed in Figure 1.
We describe the steps in more detail.

User Input For 11 of the levels, users are presented with a
website that has a form with an empty query box. Users put their
injection in the box and submit the form. One level does not have
an input box, but rather asks the user to perform a SQL injection
through a GET request. Each level has a provided query, which
is what the user input will be inserted into. The provided query
is given for the first few levels but is removed later to provide a

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

185

Figure 1: Process of submitting an injection, fromuser input
to website output, with a username and password interface.

challenge. In Figure 1, the website has a login functionality where
the provided query is

SELECT * FROM users WHERE name = [USER INPUT] AND
password = [USER INPUT]

For the user input, the user should input an injection that allows
them to log in as a specific user, in this example, the injection
admin'# allows the user to log in as admin.

Combine user input and query All inputs through the input
box are inserted into the SQL statement, just as in an actual web
application, and then are processed and executed. The specifics
of the combiner vary per level, but most work by concatenating
sections of the provided query and user input together to get the
entire injection. All levels that involve SQL injection do not sani-
tize queries, nor do they use prepared statements. The levels are
designed to mimic insecure web pages that might not have any
sanitization or protection.

SQL engine, Database The SQL statement, containing the
user’s injection, is executed. The engine goes to the database and
searches through the rows of the users table.

Fetch entries The system goes through the rows of the table and
retrieves the entries that matched the SQL query. In this example,
the row of the table with username “admin" will be fetched.

Website Output The requested data is displayed on the website.
The output format varies depending on the level. In some levels, a
table of all the fetched data is displayed on the page, in other cases,
only one row can be displayed at once. In more advanced levels, a
restricted amount of information is returned to the user, such as
“Your query has executed" without displaying the retrieved data. In
the example above, the website will display “You have logged in as
admin".

4 EXTENSIBILITY
A key feature of our system is that it was designed with extensibility
in mind. SQL injection attacks are constantly evolving, and we
would like our application to be able to adapt. In the future, when
new vulnerabilities have been discovered, it will not be enough to
just know how to solve the 12 challenges available on the current
platform. In this section, we explain the process of adding another
level to our site. Instructors that want to create a challenge that

demonstrates a new vulnerability can do so by following these
steps.
(1) First obtain the source code for the platform and get a copy
of the site running for their own personal or classroom use. The
platform should work on most UNIX based systems. We envision
that every professor who uses our platform and wishes to extend
the challenges will eventually have their own version of the site,
with the 12 provided challenges and then followed by their own.
(2) Create a database called “level13", with tables, columns, and
entries as necessary. Also, create a user called “level13" which has
SELECT privileges for the level13 database. No other privileges
should be granted unless they are needed for the challenge.
(3) There is a “levels/" folder where the necessary files for each
level are stored. A new folder called “level13" should be created. In
this folder needs to be a PHP file that contains the code to run the
challenge.
(4) Finally, after the setup for the new level is done, a few minor
changes must be made so that students can navigate to that chal-
lenge. On the webpage for each level, there is a button that links
to the next, so a link should be created from level 12 to level 13. A
level 13 button should also be added on the main page.

5 LEVEL OVERVIEW
In this section, we explain the objective of each challenge and the
type of attack each level introduces. Each level follows the same
overall format and is displayed in the screenshots below. In the
white box, a description and goal of the level is provided. Next, there
is an input box where users should input their injection. Some levels
display the provided query concatenated with the user input to
help students with their injections. After submitting the form, the
results are displayed back to the user.
(1) Display all rows of a table

In the first level, users are given a form with an input box asking
for a username. After submitting a username, all rows in the table
users_level1 that matched the given username will be retrieved
and displayed. The challenge of this level is to use SQL injection to
display all rows of this table, even though the user does not know
all the usernames. The provided query is

SELECT username FROM users_level1 WHERE username =
'[USER INPUT]'

The provided query contains a WHERE clause that checks whether
the username in the table matched the inputted username. If the
user inputs “Bob", all rows in the table with username “Bob" will
be returned. To fetch every row in the table, we need to make the
WHERE clause always true no matter the username. A well-known
method is to use ' OR ''='. The query with the injection is

SELECT username FROM users_level1 WHERE username = ''
OR ''=''

where the text in red is the user input. The WHERE clause now
checks if the username is the empty string, or if the empty string is
equal to the empty string. As the second comparison will always
be true, all rows of the tables will be fetched. Figure 2 displays the
challenge, showing the general layout of each website and also the
output from inputting the injection.

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

186

Figure 2: Level 1 page with injection query and output of
usernames.

(2) Display other tables in the database
Level 2 asks the user to fetch the names of other tables in the

database. The provided query is

SELECT username FROM users_level2 WHERE username =
'[USER INPUT]'

Students can fetch data from the TABLE_NAME column of the
TABLES table of the INFORMATION_SCHEMA database using a query
such as

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES

To solve the challenge, the quotation mark should be closed and
a query that selects table names should be appended using the
UNION operator. Finally, the # symbol can be used to comment out
the rest of the query to ignore the closing ' character. The injection
is shown in the SQL statement below in red.

SELECT username FROM users_level2 WHERE username = ''
UNION SELECT TABLE_NAME FROM
INFORMATION_SCHEMA.TABLES #'

(3) Find the column names of a table
Level 3 asks for the column names of a hidden table in the data-

base. This requires users to first list the tables, using the level 2
technique and then finding the columns in the other table. The
provided query for visualization is given as:

SELECT username FROM users_level3 WHERE username =
'[USER INPUT]'

The first step is to use the injection from level 2 to list the table
names in the database. After finding a suspicious table, students
can find the column names of the table from the COLUMNS table in
INFORMATION_SCHEMA. The injection is shown in the SQL statement
below in red.

SELECT username FROM users_level3 WHERE username = ''
UNION SELECT COLUMN_NAME FROM

INFORMATION_SCHEMA.COLUMNS WHERE
TABLE_NAME='hidden_table_NSXOkukMOh'; #

(4) Retrieve information about the database
All SQL databases have a database name, DBMS version, and

current user associated with it. The name of the database or current
user can help with creating an injection and knowing the DBMS
version helps with identifying known vulnerabilities. The query:

SELECT username FROM users_level4 WHERE username =
'[USER INPUT]'

The database name, username, and DBMS version can be re-
trieved using the DATABASE(), CURRENT_USER(), and VERSION()
functions, respectively. Users can find these functions either
through online search or the SQL manual. The query below shows
the injection to accomplish this.

SELECT username FROM users_level4 WHERE username = ''
UNION SELECT DATABASE() UNION SELECT CURRENT_USER()

UNION SELECT VERSION() #'

Figure 3: Level 4 page with injection query and output.

(5) SQL injection through a GET request
The form for this level does not have an input box. Rather, the

user should input their injection through the GET request in the
URL. The provided query is the same as in Level 1, so the level 1
SQL injection query can be reused. The current URL ends with

?username=Bob

which means that the website will send a GET request with
the username equal to Bob. Students should replace Bob with the
injection and must also learn about URL encoding.

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

187

(6) Log in as admin
This level challenges a student to log in as admin through a login

form with username and password fields. The provided query is

SELECT username FROM users_level6 WHERE username =
'[USER INPUT]' AND password = '[USER INPUT] '

This level is slightly different from the previous ones in that
there are two inputs, one for the username and the other for the
password. The query compares the given username and password
to the entries in the table, and if they match, then the user will be
logged in. The username is given as “admin", but the password is
unknown. However, using SQL injection, the username check can
be closed with a quote and the password check can be bypassed
using #. The query is

SELECT username FROM users_level6 WHERE username =
'admin' # ' AND password = '[USER INPUT] '

The result is that everything after the # is ignored and the SQL
executor will only compare the usernames. This bypasses the need
to know the password.
(7) Retrieve admin’s password

Another vulnerability in login forms is that a malicious attacker
can retrieve user passwords. The provided query is

SELECT username FROM users_level7 WHERE username =
'[USER INPUT]' AND password = '[USER INPUT] '

The form will display whatever is selected from the query
onto the website. Currently, the query selects usernames from the
users_level7 table. The solution to getting the password is mak-
ing the form return the password instead of the username. From the
provided query, students can deduce that there is a column named
password that exists in the same table. Therefore, the username
selection query can be closed and a new query that selects the
admin’s password can be appended.
(8) Read a file on the server

Hackers can use SQL injection to read files located on an improp-
erly configured server and obtain sensitive information. This level
demonstrates how file read is done through SQL. The query is:

SELECT username FROM users_level8 WHERE username =
'[USER INPUT] '

SQL has the built-in function load_file(), which will return
the contents of a file. The query with the injection is

SELECT username FROM users_level8 WHERE username = ''
UNION SELECT

load_file('/var/lib/mysql-files/hidden_file.txt')#'

The filepath was given in the level description. For security
reasons, the server was set up so that only files in that folder could
be read from.
(9) SQL Truncation attack

Although not a injection, this challenge introduces a SQL vulner-
ability related to how MariaDB truncates entries in a table. When a
user inputs a value into a database, sometimes MariaDB will trun-
cate the input if it is larger than the maximum column width. To
simulate this, a table was created where the maximum length of a
username is 20 characters.

The site allows two actions, to register and to log in. The goal
of the challenge is to log in as the admin user. The PHP source
code was given for this level. When registering a user, the inputted
username is first checked against the existing entries in the database,
and this line of code is executed.

$username = trim(substr($_POST["username"], 0, 20))

Given a username input, the code takes the substring of the first
20 characters and then removes the whitespace from the substring.
This means a 21 character input such as “admin a" will be
truncated to “admin ", and then trimmed to just “admin". The
check if the username is already in the database occurs before the
trim, therefore, an account can be registeredwith that username and
a new password, which will not be caught because “admin a"
is not equal to “admin". After this user is inserted into the database,
students can log in with “admin" and the password they used.
(10) Boolean SQL injection

This level again challenges the student to fetch the admin pass-
word. However, in level 7 the website displayed the result of the
query, which allowed us to directly print the password out on the
page. However, this level only shows if the login was successful,
without printing any information from the database onto the page.

One strategy is to brute force the admin password one letter at a
time using the LIKE operator. For example, using this SQL injection:

admin' AND password LIKE 'a%'#

can determine if the password begins with the letter a. If the
website displays that the login was successful, then the password
starts with a. Otherwise, we try the next letter, b. Once the first
character is found, which happens to be q, a second letter can be
tested and so on until the full password is found. This type of attack
is known as boolean SQL injection.

Figure 4: Level 10 page with the injection that shows the
passwords starts with the letter q.

(11) Retrieve table name and then admin password
Level 11 is an extension of two previous levels, challenging the

user to first find the table name and then the admin password. An
additional challenge is that each query can only return one row of

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

188

a table. Students need to use additional SQL commands to solve
this challenge.

For this level, users first need to know the table name, which can
be found using the injection from level 2. An additional challenge
in this level is that only one row can be returned from the table
at once. Students need to use additional SQL commands to solve
this, such as the OFFSET operator or GROUP_CONCAT. After finding
the table name, students can use the Level 7 query to finish the
challenge.
(12) Retrieve the admin password using a timing attack

Level 12 is an important level which introduces side-channel
attacks, namely a timing attack. Level 12 challenges the student
to try to get the admin password when the form only displays
that the query has finished executing. Because it only displays
that the query has executed, previous attacks do not tell enough
information to retrieve the password. The level 7 approach cannot
be used because the admin’s password is not displayed. The level
10 approach cannot be used because the server does not display if
the query was successful, only that it has finished.

The solution for this level is the same as the solution for level
10, but with the addition of a timing attack. The query will delay
the output by 5 seconds if the injection matched a row in the table,
and immediately return the output otherwise. Using the MariaDB
function CASE, a query can be built.

For example, a query can be built to check the letter a. The query
will first check if the admin’s password starts with a, just like in
level 10. If it does, it will pause for 5 seconds, if the password does
not start with a, it will not pause. From the user’s perspective, if
there is a 5 second pause, then a character of the password was
found. This process is continued by checking b, then c, etc, just like
in Level 10.

We have provided descriptions and explanations of the 12 levels
we implemented for our SQL injection practice tool. We hope that
they provide an idea of the type of injection and attack strategies we
are aiming to teach. Future administrators can extend the website
to include challenges that should build off the existing 12.

6 REFLECTIONS
The system was used during a Spring 2018 database systems course
which had 117 students. The students were all 3rd or 4th year
computer science majors. Students formed small groups of two or
three and worked through the challenges on the platform together.
They were asked to solve and review at least 4 of the challenges
during class and finish for homework if necessary.

After the students completed the activity, they were asked to
respond to a short survey as groups. Students were asked about
which challenges they found most and least interesting or useful.
They were also asked about their overall opinion of the site and
for any other comments. Subjectively, the feedback was overall
positive, with many students saying they enjoyed the platform
and the challenges. Students liked the hands-on aspect of the tool
and stated that certain aspects of our platform, such as the ability
to see the injection within the query, were helpful to learn SQL
injection. Collectively, they said that our platform was a nice way
to learn about SQL injection. After reading through the student

feedback, we believe our platform offers a practical way to teach
SQL injection to students.

Figure 5: Levels students found most useful.

Figure 6: Levels students found least interesting.

Figures 5 and 6 show the student responses as to which levels
they found most and least interesting or useful. Level 1 was not
included in this survey because the professor demonstrated that
challenge for the class. According to the survey, the most useful
levels were levels 2 and 6, with 35.3% of the groups finding them
useful. The least interesting were levels 4 and 6, with 17.6% of the
groups finding them the least interesting.

We also read through the student comments and noted their
reasons for not liking a level. The most common reason was that
the level was too simple, and therefore not interesting. Some other
faults were that it was unclear what to do, or too similar to a
previous level. We noticed that most of the responses for the least
interesting level were the first six levels. This is reasonable because
we intended the introductory challenges to be simple.

In the future, we would like to integrate our platform into the
course rather than having it be a separate activity. We will also take
student feedback into consideration and improve the levels that
students found unhelpful or unclear. Problems can be changed to
have a different direction to make the challenge unique, and more
context will be added so students find the challenges to be clear.
More difficult SQL injection challenges can be included for advanced
students. Finally, we would like our platform to be publicly available
to other institutions so that instructors can add their own problems.

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

189

REFERENCES
[1] Aarafat Aldhaqm, Shukor Razak, Siti Othman, Abdulalem Aldolah, and Md Ngadi.

2016. Conceptual Investigation Process Model for Managing Database Forensic
Investigation Knowledge. 12 (02 2016), 386–394.

[2] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrish-
nan. 2007. CANDID: Preventing Sql Injection Attacks Using Dynamic Can-
didate Evaluations. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS ’07). ACM, New York, NY, USA, 12–24.
https://doi.org/10.1145/1315245.1315249

[3] Martin Bravenboer, Eelco Dolstra, and Eelco Visser. 2007. Preventing Injection
Attacks with Syntax Embeddings. In Proceedings of the 6th International Confer-
ence on Generative Programming and Component Engineering (GPCE ’07). ACM,
New York, NY, USA, 3–12. https://doi.org/10.1145/1289971.1289975

[4] Gregory Buehrer, BruceW.Weide, and Paolo A. G. Sivilotti. 2005. Using Parse Tree
Validation to Prevent SQL Injection Attacks. In Proceedings of the 5th International
Workshop on Software Engineering and Middleware (SEM ’05). ACM, New York,
NY, USA, 106–113. https://doi.org/10.1145/1108473.1108496

[5] L. Chen and L. Tao. 2011. Teaching Web Security Using Portable Virtual Labs.
In 2011 IEEE 11th International Conference on Advanced Learning Technologies.
491–495. https://doi.org/10.1109/ICALT.2011.153

[6] Steve Christey. [n. d.]. CWE -2011 CWE/SANS Top 25 Most Dangerous Software
Errors. http://cwe.mitre.org/top25/.

[7] J Clarke. 2009. SQL Injection Attacks and Defense. 1–473 pages.

[8] William G. J. Halfond and Alessandro Orso. 2006. Preventing SQL Injection
Attacks Using AMNESIA. In Proceedings of the 28th International Conference on
Software Engineering (ICSE ’06). ACM, New York, NY, USA, 795–798. https:
//doi.org/10.1145/1134285.1134416

[9] Diallo Abdoulaye Kindy and Al-Sakib Khan Pathan. 2013. A Detailed Survey
on Various Aspects of SQL Injection: Vulnerabilities, Innovative Attacks, and
Remedies. IJCNIS 5 (2013).

[10] Odunayo Esther Oduntan and Temitope Sunday Aluko. 2014. Securing Web
Application from Structured Query Language Injection Attacks : A Four-Tier
Approach.

[11] OWASP. [n. d.]. OWASP Top 10 - 2017: The Ten Most Critical Web Application
Security Risks.

[12] Burak Polat, Cemile Tokgöz Bakıroğlu, and Mira Elif Demirhan Sayın. 2013.
Hactivism in Turkey: The Case of Redhack. 4 (10 2013). https://doi.org/10.5901/
mjss.2013.v4n9p628

[13] Kai Qian, Dan Chia-Tien Lo, Hossain Shahriar, Lei Li, Fan Wu, and Prabir Bhat-
tacharya. 2017. Learning database security with hands-on mobile labs. In 2017
IEEE Frontiers in Education Conference, FIE 2017, Indianapolis, IN, USA, October 18-
21, 2017. IEEE Computer Society, 1–6. https://doi.org/10.1109/FIE.2017.8190716

[14] A. K. Sood and R. J. Enbody. 2013. Targeted Cyberattacks: A Superset of Advanced
Persistent Threats. IEEE Security Privacy 11, 1 (Jan 2013), 54–61. https://doi.org/
10.1109/MSP.2012.90

[15] A. V. Uskov. 2013. Hands-On Teaching of Software andWeb Applications Security.
In 2013 3rd Interdisciplinary Engineering Design Education Conference. 71–78.
https://doi.org/10.1109/IEDEC.2013.6526763

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

190

https://doi.org/10.1145/1315245.1315249
https://doi.org/10.1145/1289971.1289975
https://doi.org/10.1145/1108473.1108496
https://doi.org/10.1109/ICALT.2011.153
http://cwe.mitre.org/top25/
https://doi.org/10.1145/1134285.1134416
https://doi.org/10.1145/1134285.1134416
https://doi.org/10.5901/mjss.2013.v4n9p628
https://doi.org/10.5901/mjss.2013.v4n9p628
https://doi.org/10.1109/FIE.2017.8190716
https://doi.org/10.1109/MSP.2012.90
https://doi.org/10.1109/MSP.2012.90
https://doi.org/10.1109/IEDEC.2013.6526763

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Extensibility
	5 Level Overview
	6 Reflections
	References

