
Graded Exercise 2

CSC230 Database Technologies for Analytics

08 November 2019

1 The waterfalls database.

county

+id: INTEGER (PK)

+name: VARCHAR(10)

+population: INTEGER

gov_unit

+id: INTEGER (PK)

+parent_id: INTEGER

+name: VARCHAR(10)

+type: VARCHAR(8)

1

trip

+name: VARCHAR(10) (PK)

+stop: INTEGER (PK)

+parent_stop: INTEGER

upfall

+id: INTEGER (PK)

+name: VARCHAR(15)

+datum: VARCHAR(7)

+zone: INTEGER

+northing: INTEGER

+easting: INTEGER

+lat_lon: VARCHAR(20)

+county_id: INTEGER

+open_to_public: VARCHAR(1)

+owner_id: INTEGER

+description: VARCHAR(80)

+confirmed_date: TIMESTAMP

2 Questions

1. Before we begin writing queries on our database of waterfalls, we might
want to take a look at the structure and contents of our tables.

Write a query that returns the whole upfall table (all rows and all columns).

SELECT ∗ FROM u p f a l l ;

2

2. Here is a query that produces in each row the name of a waterfall and the
name of the county in which that waterfall is located. It orders the results
by county in ascending alphabetical order.

Edit the query to make it label the columns in the result with the words
‘Name of waterfall’ and ‘Name of county.’

/∗
∗ name o f wa t e r f a l l , name o f county ,
∗ ordered by county

∗/
SELECT f . name ,

c . name
FROM u p f a l l f INNER JOIN county c ON f . county id = c . id
ORDERBY c . name , f . name ;

/∗
∗ name o f wa t e r f a l l , name o f county ,
∗ ordered by county

∗/
SELECT f . name AS ’Name o f w a t e r f a l l ’ ,

c . name AS ’Name o f county ’
FROM u p f a l l f INNER JOIN county c ON f . county id = c . id
ORDERBY c . name , f . name ;

3. Here is the start of a query that produces in each row the name of a
county and the number of waterfalls in that county. It orders the results
by county in ascending alphabetical order.

Add what is needed to make it possible for COUNT(∗) to tally for each
county the number of rows that contain the name of that county.

/∗
∗ name o f county , number o f w a t e r f a l l s in county ,
∗ ordered by county

∗/
SELECT c . name AS ’Name o f county ’ ,

COUNT(∗) AS ’Number o f w a t e r f a l l s in county ’
FROM u p f a l l f INNER JOIN county c ON f . county id= c . id

ORDERBY c . name ;

3

/∗
∗ name o f county , number o f w a t e r f a l l s in county ,
∗ ordered by county

∗/
SELECT c . name AS ’Name o f county ’ ,

COUNT(∗) AS ’Number o f w a t e r f a l l s in county ’
FROM u p f a l l f INNER JOIN county c ON f . county id= c . id
GROUPBY c . name
ORDERBY c . name ;

4. Here is the start of a query that produces the names of counties that have
only one waterfall.

This query searches for matching data in a table that another query pro-
duces. That inner SELECT statement must join two tables.

Complete the query by providing the code that constructs the join (in the
space that follows FROM in the inner SELECT).

/∗ names o f coun t i e s t h a t have only one w a t e r f a l l ∗/
SELECT name AS ’Name o f county ’ FROM

(SELECT c . name AS name , COUNT(∗) AS numberOfFalls
FROM
GROUPBY c . name) AS t

WHERE numberOfFalls = 1
ORDERBY name ;

/∗ names o f coun t i e s t h a t have only one w a t e r f a l l ∗/
SELECT name AS ’Name o f county ’ FROM

(SELECT c . name AS name , COUNT(∗) AS numberOfFalls
FROM u p f a l l f INNER JOIN county c ON f . county id = c . id
GROUPBY c . name) AS t

WHERE numberOfFalls = 1
ORDERBY name ;

4

5. Suppose that you have a table T that contain in each row the name of
a county and the number of waterfalls in that county. The columns are
‘name’ and ‘numberOfFalls.’

Compose a query that produces the names of counties that have more
than one waterfall.

SELECT name AS ’Name o f county ’ FROM
T

WHERE numberOfFalls > 1
ORDERBY name ;

6. Here is the start of a query that produces in each row the name of a city
or township and the name of the county in which that city/township is
located.

Modify the query to make it order the results first by county and then by
city/township in ascending alphabetic order.

/∗
∗ name o f c i t y or township , name o f county ordered by county ,
∗ c i t y / township

∗/
SELECT a . name AS ’ City /Township ’ , b . name AS ’ County ’

FROM gov un i t a INNER JOIN gov un i t b ON a . pa r en t id = b . id
WHERE a . type IN (’ City ’ , ’ Township ’) AND b . type = ’ County ’ ;

/∗
∗ name o f c i t y or township , name o f county ordered by county ,
∗ c i t y / township

∗/
SELECT a . name AS ’ City /Township ’ , b . name AS ’ County ’

FROM gov un i t a INNER JOIN gov un i t b ON a . pa r en t id = b . id
WHERE a . type IN (’ City ’ , ’ Township ’) AND b . type = ’ County ’
ORDERBY b . name , a . name ;

5

7. Here is the start of a query that produces in each row the name of a city or
township, the name of the county in which that city/township is located,
and the name of the state in which that county is located. It orders the
results by state, county, and city in ascending alphabetic order.

Supply the code that is needed after instances of the reserved word ON.

/∗
∗ name o f c i t y or township , name o f county , name o f s t a t e
∗ ordered by s t a t e , county , c i t y

∗/
SELECT a . name AS ’ City /Township ’ ,

b . name AS ’ County ’ ,
c . name AS ’ State ’

FROM gov un i t a INNER JOIN gov un i t b
ON INNER JOIN gov un i t c
ON

WHERE a . type IN (’ City ’ , ’ Township ’) AND b . type = ’ County ’
ORDERBY c . name , b . name , a . name ;

/∗
∗ name o f c i t y or township , name o f county , name o f s t a t e
∗ ordered by s t a t e , county , c i t y

∗/
SELECT a . name AS ’ City /Township ’ ,

b . name AS ’ County ’ ,
c . name AS ’ State ’

FROM gov un i t a INNER JOIN gov un i t b
ON a . pa r en t id = b . id INNER JOIN gov un i t c
ON b . pa r en t id = c . id

WHERE a . type IN (’ City ’ , ’ Township ’) AND b . type = ’ County ’
ORDERBY c . name , b . name , a . name ;

8. Here is the start of a query that produces in each row the name of a
waterfall together with the length of that waterfall’s description.

Modify the query to make it order the results by the length of the descrip-
tion in descending order, and then by the name in ascending alphabetic
order.

/∗
∗ name o f wa t e r f a l l , l e n g t h o f wa t e r f a l l ’ s d e s c r i p t i o n

6

∗ ordered by l en g t h o f d e s c r i p t i o n in descending order , name
∗/
SELECT name , LENGTH(d e s c r i p t i o n) AS ’ Length o f d e s c r i p t i o n ’

FROM u p f a l l ;

/∗
∗ name o f wa t e r f a l l , l e n g t h o f wa t e r f a l l ’ s d e s c r i p t i o n
∗ ordered by l en g t h o f d e s c r i p t i o n in descending order , name

∗/
SELECT name , LENGTH(d e s c r i p t i o n) AS ’ Length o f d e s c r i p t i o n ’

FROM u p f a l l ORDERBY LENGTH(d e s c r i p t i o n) DESC, name ;

9. Here is the start of a query that produces in each row the name of a trip
and the name of a waterfall that we will visit on that trip.

Add what is needed between FROM and ORDER BY.

/∗
∗ name o f t r i p , name o f w a t e r f a l l

∗/
SELECT t . name , f . name FROM

ORDERBY t . name , f . name ;

/∗
∗ name o f t r i p , name o f w a t e r f a l l

∗/
SELECT t . name , f . name FROM

u p f a l l f INNER JOIN t r i p t ON t . stop = f . id
ORDERBY t . name , f . name ;

10. Here is the start of a query that produces in each row the name of a trip
together with the name of the first waterfall that we will visit on that on
trip.

It is missing a WHERE clause. Write a WHERE clause that will in-
clude in the results table only those records that contain a NULL in the
parent stop column.

7

/∗
∗ name o f t r i p , name o f f i r s t w a t e r f a l l on t r i p

∗/
SELECT t . name , f . name FROM

u p f a l l f INNER JOIN t r i p t ON t . stop = f . id ;

/∗
∗ name o f t r i p , name o f f i r s t w a t e r f a l l on t r i p

∗/
SELECT t . name , f . name FROM

u p f a l l f INNER JOIN t r i p t ON t . stop = f . id
WHERE parent s top IS NULL;

11. Here is a query that finds the minimum easting value in the upfall table.

SELECT MIN(e a s t i n g) FROM u p f a l l ;

Here is a query that finds the maximum easting value in the upfall table.

SELECTMAX(e a s t i n g) FROM u p f a l l ;

Both of these queries returns a table with a single row and a single column.

Compose a query that returns the difference between the maximum and
minimum values of easting. This result will also be just one number—a
table with single row and a single column. It is a measure of the distance
between the western-most waterfall and the eastern-most waterfall.

SELECTMAX(e a s t i n g) − MIN(e a s t i n g) FROM u p f a l l ;

12. Compose a query that returns the name of the waterfall whose easting
is smaller than the easting of another easting, together with the value of
that easting.

This query will produce a table with a two columns and a single row. The
first column will contain the name of the waterfall. The second column
will contain the value of the waterfall’s easting.

Compose your query by placing these words in the right order.

8

• FROM

• FROM

• MIN(easting)

• SELECT

• WHERE

• easting

• easting

• name,

• upfall

• upfall);

• =

• (SELECT

SELECT name , e a s t i n g
FROM u p f a l l
WHERE e a s t i n g = (SELECT min(e a s t i n g) FROM u p f a l l) ;

9

