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Chapter 1

Notes

e os.mkdirs()
e os.path.join()
e matplotlib.pyplot.savefig()

e matplotlib.pyplot.tight_layout()

e what is my organization’s objective?

e model is probably not the end goal

e how will model be used? what benefit from use of model?
e framing the problem will help us answer questions. . .

— which algorithms?
— which measures of performance?

— how much effort to invest in fine-tuning?
e our model’s output — prediction of district’s median housing price

e will be of one of several inputs to another system whose output will be a
recommendation to invest/not invest

e our model is one component of a data pipeline

e components of pipeline self-contained, independent, communicate through
well-defined interfaces, run asychronously

e easier to build and maintain a system that is modularized

e how are we currently solving the problem?


https://docs.python.org/3/library/os.html#files-and-directories
https://docs.python.org/3/library/os.path.html#module-os.path
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.html

— by hand

using complex rules (to estimate prices when data unavailable)

takes a long time

— less accuracy than we want and think that we can achieve (20%
errors)

e input for our model—census data
e Census Bureau’s block groups

— smallest geographical unit for which Bureau publishes data
— 600-3000 people (typically)

we will call them districts

— population, median income, median housing price, and other features

e nature of our problem suggests. ..

supervised learning (Census data includes housing prices—our label)

regression (we are trying to predict prices)

— multiple regression (we may use several features of a district to pre-
dict prices)

— univariate regression (we are only trying to predict one thing—price)

— batch learning (no continuous stream of data or frequent updates of
data)

e measurements of performance: Root Mean Square Error, Mean Absolute
Error
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e automating retrieval of data helpful

— might want to update data
— might want to repeat work on other computers

— might want to give other members of team ability to get data

assures data is placed in same place every time
e inspect data using DataFrame’s methods

— head()
— info()
— describe()

— hist() for whole dataset (all numerical features), or one attribute at
a time

e look for...

scale—are all features measured on the same scale?

units—do we know how to interpret the numbers?
— range—are values capped?

— shape of distributions—long tails?
e WARNING!!

— do not look at data too much!
— we can easily acquire biases! (data snooping bias)

— divide data into training set and test set now (typically 20%)

e want stable training/test set division

save test set on first run, reload on subsequent runs
— seed random number generator to get same shuffle each time
— both of above solutions do not work if retrieve new datasets

— attach unique id to each record (hash function), select records with
lowest 20% values

— use row number as id? (must then delete no records and add new
records only by appending)

— combine latitude, longitude to produce id
e use function from scikit-learn
— sklearn.model_selection.train_test_split

e stratified sampling


https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.head.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.info.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.hist.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

— suppose that we expect very different responses from male, female
survey respondents

— U.S. population is 51.3% female, 48.7% male

— 12% of random samples of 1000 people will have either < 49% female
or > 54% female

— better to sample in a way that guarantees close to 510 women, 490
men

— women and men are strata (groups homogeneous in some way)

suppose that we have reason to believe that median income strongly cor-
related with median housing price

how to define strata?
use Scikit-Learn’s StratifiedShuffleSplit()

compare distribution of results with distribution in random (unstratified)
sampling

many people do not give enough attention to how they will create a test
set

methods learned in this example will have application in cross-validation
again, do not look at test set!

might want to create an exploration set (a subset of training set, whose
smaller size will allow easier, faster experimentation)

make a copy of training set for experimentation

use scatter plot (latitude, longitude) to look at geographic distribution
“alpha” option allows better separation of circles

“s” option links radius of circles to populations of districts

“c” and “cmap” options (with pre-defined “jet” spectrum) links colors of
circles to prices

concentrations of population around San Francisco, Los Angeles, San
Diego, and cities in Central Valley (Sacramento, Fresno)

map shows that housing prices are related to population density and near-
ness to the ocean

use corr() method to compute standard correlation coefficients (Pearson’s
r) for every pair of features

correlation coefficients can take values from —1 to +1



strong positive correlation between housing prices and incomes in district

e weak negative correlation between housing prices and latitude

correlation coeflicient only measure linear correlations!

correlation coefficient does not indicate slope

e here we are asking how sure we are that one value will increase when
anothe increases (not how fast it will increase!)

e pandas’ scatter_matrix() method is another way to look at correlations

e do not want all 11 x 11 = 121 graphs!

let’s look at just 4 features (16 graphs)

median_house_value, median_income, total_rooms, housing_median_age

scatter_matrix() method gives histogram (rather than pointless straight
line) when plotting a variable against itself

look more closely at median_income vs. median_house_value (most promis-
ing)
note horizontal lines at $500K, $450K, $350K, maybe $280K and elsewhere

e room data points on horizontal lines to avoid recreating artifact in model?

transform tail-heavy distributions with logarithm?
e compute new features from existing features

— total_rooms / households
— total_bedrooms / total_rooms

— population / households

how strong is the correlation between these variables and price?

total_bedrooms is missing some values

— delete this feature from the dataset (DataFrame’s drop() method)

— delete records in which this value is missing (DataFrame’s dropna()
method)

— fill missing values (with zero, mean, median, or something else) (DataFrame’s
fillna() method—use median and remember its value to use later in
test set)

e Scikit-Learn’s Imputer is a way to replace missing values

imputer = Simplelmputer(strategy="median”)



can only compute median on numerical attributes—create a copy of train-
ing set from which ocean proximity (a non-numerical attribute) has been
removed

housing_.num = housing.drop(”ocean_proximity”, axis=1)

compute values of all numerical attributes

imputer. fit (housing_num)

we have computed all medians, even though values are missing only in the
total_bedrooms column—but no harm done

similarly, we will ask the program to replace missing values in all columns,
even knowing that in this case that really means replacing values in only
one column

replace missing values with median

X = imputer. transform (housing_num)

put data back in a DataFrame

housing_tr = pd.DataFrame (X, columns=housing_num.columns,
index=housing_num . index)

design principles of Scikit-Learn’s API

— consistency
* estimators—parameter is dataset (or dataset and labels), hyper-
parameters (strategy=""median"), fit() method
* transformers—transform() method
* predictors—e.g., LinearPrediction, predict() and score() meth-
ods
— inspection
* estimator’s hyperparameters are instance variables
* estimator’s learned parameters are instance variables whose iden-
tifiers end with an underscore
— non-proliferation of classes
* data representation with NumPy arrays or SciPy sparse matrices
(rather than custom classes)
* hyperparameters are strings or numbers

— composition—create a Pipeline estimator by chaining together Esti-
mators

— sensible defaults



ocean_proximity is a categorical variable

create a DataFrame that contains only the ocean_proximity column

housing_cat = housing [[” ocean_proximity” ]]

machine learning algorithms might work better with numerical variables

can convert categorical to numerical with Scikit-Learn’s OrdinalEncoder
class

ordinal_encoder = OrdinalEncoder ()
housing_cat_encoded = ordinal_encoder.fit_transform (housing_cat)
examine transformations of first few samples

housing_cat_encoded [:10]

examine categories

ordinal_encoder.categories_

see that ‘INLAND’ follows ‘1H OCEAN’ in listing of categories
but ‘1H OCEAN’ more like ‘NEAR OCEAN’ than like INLAND’!
replace categorical variable with a binary vector—‘one hot encoding’

— length of vector equal to number of possible values for categorical
variable

— each vector contains just one ‘1’ (all other elements are ‘0)

method creates a sparse matrix

cat_encoder = OneHotEncoder ()
housing_cat_lhot = cat_encoder.fit_transform (housing_cat)
housing_cat_lhot

this approach might not be practical if there are very large number of
possible values for the categorical variable

might be able to substitute relevant numerical variables for the categorical
variable (e.g., replace a country code with population and GDP)

might want to write custom transformers

— Scikit-Learn uses duck typing (not inheritance)
— enough to define fit(), transform(), and fit_transform() methods

— TransformerMixin and BaseEstimator are useful base classes



e feature scaling

total number of rooms ranges from 6 to 39320
median incomes range from 0 to 15

very different scales!

(do not often want to scale target values)

min-max scaling (normalization) puts all values in 0.0-1.0 range

T —min
r=
mazr — min

standardization establishes mean = 0.0 and variance = 1.0

standardization is much less affected by outliers
use just the training data to create the scaling functions

then apply scaling functions to training set, test set, and new data

e create a pipeline

constructor takes pairs—each pair a name and an estimator
each name is unique
names do not contain double underscores

all but last estimator must be a transformer (has a fit_transform()
method)

num_pipeline = Pipeline (|
(’imputer’, SimpleImputer(strategy="median”)),
(’attribs_adder’, CombinedAttributesAdder()),
(’std_scaler’, StandardScaler()), ])

housing_num_tr = num_pipeline. fit_transform (housing_-num)

e pipeline has same methods as its last estimator

e in this example, last estimator is a transform, so pipeline has a fit_transform()
method

e better to handle all columns together (rather than handle numerical and
categorical features separately—as done so far in this example)

e use Scikit-Learn’s ColumnTransformer



— constructor takes tuples

— each tuple contains a name, a transformat, and a list of names or
indices of columns

— applies transformers to appropriate columns
— concatenates outputs of transformers (builds rows)
— number of rows returned by each transformer must be the same

— ColumnTransformer will return dense or sparse matrix, depending
on outputs of transformers and a specified threshold

— specify “drop” to leave out column (or columns)

— specify “passthrough” to leave column (or columns) unchanged

num_attribs = list (housing_ num)
cat_attribs = [?ocean_proximity” ]
full_pipeline = ColumnTransformer (|

("num” ; num_pipeline, num_attribs),
(?cat”, OneHotEncoder (), cat_attribs), ])

housing _prepared = full_pipeline.fit_transform (housing)

« WE HAVE NOW...

— framed the problem

obtained data
— explored the data

created a training set and a test set

— constructed a pipeline of transformations

WE ARE READY TO SELECT AND TRAIN AN ML
MODEL

let’s use linear regression

use Scikit-Learn’s LinearRegression class

e see example

train a linear regression model

lin_.reg = LinearRegression ()
lin_reg . fit (housing_prepared , housing_labels)

let’s see how well it works. ..

10


https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html

# first 5 samples

some_data = housing.iloc [:5]
some_labels = housing_labels.iloc [:5]
some_data_prepared = full_pipeline.transform (some_data)

# print the predictions
print (” Predictions:”, lin_reg.predict(some_data_prepared))

# Predictions: [ 210644.6045 317768.8069 210956.4333
# 59218.9888 189747.5584]

# print the known wvalues
print (” Labels:”, list (some_labels))

# Labels: [286600.0, 340600.0, 196900.0, 46300.0, 254500.0]

big difference between prediction and known price for first sample! (pre-
dict $210K, but actual is $286K)

measure regression model’s RMSE. ..

from sklearn.metrics import mean_squared_error

housing_predictions = lin_reg.predict (housing_prepared)
lin_.mse = mean_squared_error (housing_labels , housing_predictions)
lin_.rmse = np.sqrt(lin_.mse)>>> lin_rmse

rmse = 68628.19819848922

most house prices in [$120K, $265K]

typical error > $68 K—would like to do better!!
our model is underfitting the training data

— maybe model is not sufficiently powerful?

— maybe features do not carry enough information to allow good pre-
dictions?

possible responses. . .

— select different features
— select different model

— reduce constraints (not an option here, since model is not regularized)

let’s try a different model, DecisionTreeRegressor

11


https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor ()
tree_reg.fit (housing_prepared, housing_labels)

see what we get with this model. ..

housing_predictions = tree_reg.predict (housing_prepared)
tree_mse = mean_squared_error (housing_labels , housing_predictions)
tree_.rmse = np.sqrt(tree_mse)

result is tree_rmse = 0.0! (perfect predictions unlikely!)
now we are overfitting the data!

try cross-validation—from training set, produce a smaller training set and
a validation set

could use train_test_split(), but better to use Scikit-Learn’s K-fold cross
validation

here, divide training set into 10 “folds”

10 times, pick one fold for evaluation and train on the other 9 folds

from sklearn.model_selection import cross_val_score

scores = cross_val_score(tree_reg, housing _prepared, housing_labels
scoring="neg_mean_squared_error” , cv=10)
tree_rmse_scores = np.sqrt(—scores)

e notice the minus sign in front of scores—cross-validation uses a utility

function, not a cost function

— a bigger value means a better result in case of utility function

— a smaller value means a better result in case of cost function

e here’s how to check the results. ..

def display_scores(scores):

print (” Scores:”, scores)
print ("Mean:” , scores.mean())
print (” Standard._deviation:”, scores.std())

display_scores(tree_rmse_scores)

e ...and here are the results (roughly, $71.4K + $2.4K) ...
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Scores: [70194.33680785
66855.16363941
72432.58244769
70758.73896782
71115.88230639
75585.14172901
70262.86139133
70273.6325285
75366.87952553
71231.65726027]

Mean: 71407.68766037929

Standard deviation: 2439.4345041191004

e is the decision tree model better than the linear regression model? let’s
see. ..

lin_scores = cross_val_score(lin_reg , housing_prepared,
housing_labels , scoring="neg_mean_squared_error” , cv=10)

lin_-rmse_scores = np.sqrt(—lin_scores)

e look at these results. ..

display_scores(lin_.rmse_scores)

e here they are (roughly $69.0K + $2.7K) ...

Scores: [66782.73843989
66960.118071
70347.95244419
74739.57052552
68031.13388938
71193.84183426
64969.63056405
68281.61137997
71552.91566558
67665.10082067]

Mean: 69052.46136345083

Standard deviation: 2731.674001798348

e in this case, decision tree model worse than linear regression model
e try one last model-—RandomForestRegressor

— train many decision trees on random subset of features
— average the predictions

— an example of ensemble learning

13



e code is like before (roughly $50.2K + $2.1K) ...

from sklearn.ensemble import RandomForestRegressor

forest_reg = RandomForestRegressor ()
forest_reg.fit (housing_prepared, housing_labels)

forest_rmse
18603.515021376355

display_scores(forest_rmse_scores)Scores: [49519.80364233 47461.911!
50029.02762854 52325.28068953 49308.39426421 53446.37892622
48634.8036574 47585.73832311 53490.10699751 50021.5852922

Mean: 50182.303100336096

Standard deviation: 2097.0810550985693

e a better result, however. ..

score on training set << score on validation set — still overfitting
could simplify model
could constrain (regularize) model

could get more training data

Mathematics

Arithmetic mean
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Variance and covariance
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Chapter 2

Code

2.1 Chapter 2 End-to-end Machine Learning
project

Welcome to Machine Learning Housing Corp.! Your task is to predict median
house values in Californian districts, given a number of features from these
districts.

This notebook contains all the sample code and solutions to the exercises in
chapter 2.

2.2 Setup

First, let’s import a few common modules, ensure MatplotLib plots figures inline
and prepare a function to save the figures. We also check that Python 3.5 or
later is installed (although Python 2.x may work, it is deprecated so we strongly
recommend you use Python 3 instead), as well as Scikit-Learn > 0.2.

In[1]:

# Python 3.5 is required
import sys
assert sys.version_info >= (3, 5)

# Scikit—Learn 0 .20 is required
import sklearn
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assert sklearn.__version__. >= 70.20”

# Common imports
import numpy as np
import os

# To plot pretty figures

get_ipython (). run_line_magic( ’matplotlib’, ’inline’)
import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rc(’axes’, labelsize=14)

mpl.rc('xtick’, labelsize=12)

mpl.rc('ytick’, labelsize=12)

# Where to save the figures

PROJECT ROOTDIR = 7.7

CHAPTERID = ”"end_to_end_project”

IMAGES PATH = os.path.join (PROJECT ROOTDIR, ”images”, CHAPTERID)
os.makedirs (IMAGES PATH, exist_ok=True)

def save_fig(fig_-id, tight_layout=True,
fig_extension="png” , resolution=300):
path = os.path.join (IMAGESPATH, fig_id + ”7.” + fig_extension)
print (”Saving._figure”, fig_id)
if tight_layout:
plt.tight_layout ()
plt.savefig (path, format=fig_extension , dpi=resolution)

# Ignore wuseless warnings (see SciPy issue #5998)

import warnings
warnings . filterwarnings (action="ignore” , message=""internal_gelsd”)

2.3 Get the data

In[1]:

import os
import tarfile
import urllib

DOWNLOADROOT = \
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"https://raw.githubusercontent .com/ageron/handson—ml2/master/”
HOUSING PATH = os.path.join(” datasets”, ”"housing”)
HOUSING_URL = DOWNLOADROOT + ” datasets/housing/housing.tgz”

def fetch_housing_data(housing_url=HOUSING_URL,
housing_path=HOUSING PATH ) :
if not os.path.isdir (housing_path):
os . makedirs (housing_path)
tgz_path = os.path.join (housing_path, ”housing.tgz”)
urllib .request.urlretrieve (housing_url, tgz_path)
housing_tgz = tarfile .open(tgz_path)
housing_tgz.extractall (path=housing_path)
housing_tgz. close ()

In[2]:

fetch_housing_data ()

In[3]:

import pandas as pd

def load_housing_data (housing_path=HOUSINGPATH):
csv_path = os.path.join (housing_path, ”housing.csv”)
return pd.read_csv(csv_path)

In[4]:

housing = load_housing_data()
housing . head ()

In[5]:

housing . info ()
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In[7]:

housing [” ocean_proximity” ]. value_counts ()

In[8]:

housing. describe ()

In[9]:

get_ipython (). run_line_magic( ’matplotlib’, ’inline’)
import matplotlib.pyplot as plt
housing. hist (bins=50, figsize =(20,15))

save_fig (”attribute_histogram_plots”)

plt .show ()

In[10]:

# to make this motebook’s output identical at every run
np.random. seed (42)

In[11]:

import numpy as np

# For illustration only. Sklearn has train_test_split()
def split_train_test (data, test_ratio):

shuffled_indices = np.random.permutation (len(data))
test_set_size = int(len(data) x test_ratio)
test_indices = shuffled_indices [: test_set_size]
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train_indices = shuffled_indices [test_set_size :]
return data.iloc[train_indices], data.iloc[test_indices]

In[12]:

train_set , test_set = split_train_test (housing, 0.2)
len(train_set)

In[13]:

len(test_set)

In[14]:

from zlib import crc32

def test_set_check(identifier , test_ratio):
return crc32(np.int64 (identifier)) & Oxffffffff < test_ratio * 2x%32

def split_train_test_by_id (data, test_ratio, id_column):

ids = data[id_column]
in_test_set = ids.apply(lambda id_: test_set_check(id., test_ratio))
return data.loc|[ in_test_set], data.loc[in_test_set ]

The implementation of ¢ test_set_check () above works fine in both Python 2 and
Python 3. In earlier releases, the following implementation was proposed, which
supported any hash function, but was much slower and did not support Python
2:

In[15]:

import hashlib

def test_set_check (identifier , test_ratio , hash=hashlib.md5):
return hash(np.int64 (identifier )).digest ()[—1] < 256 * test_ratio
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If you want an implementation that supports any hash function and is compat-
ible with both Python 2 and Python 3, here is one:

In[16]:

def test_set_check (identifier , test_ratio, hash=hashlib.md5):
return bytearray (hash(np.int64 (identifier )).digest ())[—1] \
< 256 * test_ratio

In[17]:
housing_with_id = housing.reset_index () # adds an ‘indexr ¢ column
train_set , test_set =\

split_train_test_by_id (housing_with_id, 0.2, ”index”)

In[18]:

housing_with_id [”7id”] = housing[”longitude”] = \
1000 + housing[”latitude”]

train_set , test_set = \

split_train_test_by_id (housing_with_id, 0.2, ”7id”)

In[19]:

test_set .head ()

In[20]:

from sklearn.model_selection import train_test_split

train_set , test_set = \
train_test_split (housing, test_size=0.2, random _state=42)
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In[21]:

test_set .head ()

In[22]:

housing [”median_income” ]. hist ()

In[23]:

housing [”income_cat”] = pd.cut(housing [”median_income” |,
bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
labels=[1, 2, 3, 4, 5])

In[24]:

housing [”income_cat” ]. value_counts ()

In[25]:

housing [”income_cat” ]. hist ()

In[26]:

from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2,
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random_state=42)
for train_index, test_index in split.split(housing,
housing [”income_cat” ]):

strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
In[27]:
strat_test_set [”income_cat”].value_counts() / len(strat_test_set)
In[28]:
housing [”income_cat” ]. value_counts () / len(housing)
In[29]:

def income_cat_proportions(data):
return data[”income_cat”].value_counts() / len(data)

train_set , test_set = train_test_split(housing, test_size=0.2,
random_state=42)

compare_props = pd.DataFrame ({
”Overall”: income_cat_proportions (housing),
”Stratified”: income_cat_proportions(strat_test_set),
"Random” : income_cat_proportions(test_set),
}).sort_index ()
compare_props ["Rand. Y%error”] = \
100 % compare_props[”Random”] / \
compare_props [’ Overall”] — 100
compare_props [” Strat. Y%error” ]| = \\
100 % compare_props[” Stratified”] / \
compare_props [’ Overall”] — 100

In[30]:
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compare_props

In[31]:

for set_ in (strat_train_set , strat_test_set):
set_.drop(”income_cat” , axis=1, inplace=True)

2.4 Discover and visualize the data to gain in-

sights
In[32]:
housing = strat_train_set.copy()
In[33]:

housing . plot (kind="scatter”, x="longitude”, y="latitude”)
save_fig (”bad_visualization_plot”)

In[34]:

housing. plot (kind="scatter”, x="longitude”, y="latitude”,
alpha=0.1)
save_fig (" better_visualization_plot”)

The argument sharex=False fixes a display bug (the x-axis values and legend
were not displayed). This is a temporary fix (see: https://github.com/pandas-
dev/pandas/issues/10611 ). Thanks to Wilmer Arellano for pointing it out.
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In[35]:

housing . plot (kind="scatter”, x="longitude”, y="latitude”,
alpha=0.4,

s=housing [” population”]/100, label="population”,
figsize =(10,7), c="median_house_value”
cmap=plt .get_cmap(”jet”), colorbar=True,
sharex=False)

plt.legend ()

save_fig ("housing_prices_scatterplot”)

In[36]:

# Download the California image
images_path =\
os.path.join (PROJECT ROOTDIR, ”images”, "end_to_end_project”)
os . makedirs (images_path, exist_ok=True)
DOWNLOADROOT = \
"https://raw.githubusercontent.com/ageron/handson—ml2/master/
filename = ”california .png”
print (”Downloading” , filename)
url = DOWNLOADROOT + ”images/end_to_end_project/” + filename
urllib.request.urlretrieve (url, os.path.join (images_path, filename))

»

In[37]:

import matplotlib.image as mpimg
california_img=mpimg.imread (os.path.join (images_path, filename))
ax = housing.plot(kind="scatter”, x="longitude”, y="latitude”,
figsize =(10,7),
s=housing [ ’population’]/100, label="Population”,
c="median_house_value” , cmap=plt.get_cmap(”jet”),
colorbar=False , alpha=0.4,
)
plt .imshow (california_img ,
extent=[—124.55, —113.80, 32.45, 42.05],
alpha=0.5,
cmap=plt .get_cmap (" jet”))
plt.ylabel (” Latitude” , fontsize=14)
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plt.xlabel (”Longitude”, fontsize=14)

prices = housing[” median_house_value” |

tick_values = np.linspace(prices.min(), prices.max(), 11)

cbar = plt.colorbar ()

cbar.ax.set_yticklabels ([”$%dk” %(round(v/1000)) for v in tick_values],
fontsize=14)

chbar.set_label (’Median_.House_.Value’, fontsize=16)

plt.legend (fontsize=16)
save_fig (”california_housing_prices_plot”)
plt .show ()

In[38]:

corr_matrix = housing.corr ()

In[39]:

corr_matrix ["median_house_value” |. sort_values (ascending=False)

In[40]:

# from pandas.tools.plotting import scatter_matriz
# For older versions of Pandas
from pandas.plotting import scatter_matrix

attributes = [?median_house_value” , "median_income” , ”total_rooms”
"housing_median_age” ]
scatter_matrix (housing[attributes], figsize=(12, 8))

save_fig (”scatter_matrix_plot”)

In[41]:
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housing . plot (kind="scatter”, x="median_income” , y="median_house_value” ,
alpha=0.1)

plt.axis ([0, 16, 0, 550000])

save_fig ("income_vs_house_value_scatterplot”)

In[42]:
housing [”rooms_per_household”] =\

housing [”total_rooms” ]/ housing [” households”]
housing [” bedrooms_per_room”] = \

housing [”total_bedrooms”]/housing[” total_rooms” ]
housing [” population_per_household”] = \

housing [” population”]/housing [” households”]
In[43]:
corr_matrix = housing.corr ()
corr_matrix ["median_house_value” |. sort_values (ascending=False)
In[44]:

housing . plot (kind="scatter”

x="rooms_per_household” , y="median_house_value” ,
alpha=0.2)

plt.axis ([0, 5, 0, 520000])

plt .show ()

In[45]:

housing . describe ()
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2.5 Prepare the data for Machine Learning al-
gorithms

In[46]:

# drop labels for training set

housing = strat_train_set.drop(” median_house_value”, axis=1)
housing_labels = strat_train_set [”median_house_value”]. copy ()
In[47]:

sample_incomplete_rows = \

housing [housing . isnull ().any(axis=1)].head ()
sample_incomplete_rows

In[48]:

# option 1

sample_incomplete_rows .dropna(subset=["total_bedrooms”|)

In[49]:

# option 2

sample_incomplete_rows.drop(” total_bedrooms” , axis=1)

In[50]:

# option 3

median = housing[”total_bedrooms” |. median ()

sample_incomplete_rows[” total_bedrooms” ]. fillna (median, inplace=True)
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In[51]:

sample_incomplete_rows

In[52]:

from sklearn.impute import SimpleImputer
imputer = SimpleImputer (strategy="median”)

Remove the text attribute because median can only be calculated on numerical
attributes:

In[53]:

housing_ num = housing.drop(” ocean_proximity”, axis=1)
# alternatively: housing-num =\

# housing. select_dtypes (include=[np.number])
In[54]:

imputer. fit (housing_num)

In[55]:

imputer. statistics_

Check that this is the same as manually computing the median of each attribute:

In[56]:
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housing_num . median (). values

Transform the training set:

In[57]:
X = imputer.transform (housing_num)
In[58]:
housing_tr = pd.DataFrame (X, columns=housing_num .columns,
index=housing.index)
In[59]:

housing_tr.loc[sample_incomplete_rows.index.values]

In[60]:

imputer.strategy

In[61]:

housing_tr = pd.DataFrame (X, columns=housing num .columns
index=housing num .index)

In[62]:
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housing_tr.head ()

Now let’s preprocess the categorical input feature, ‘ocean_proximity’:

In[63]:

housing_cat = housing [[” ocean_proximity” |]
housing_cat.head (10)

In[64]:

from sklearn.preprocessing import OrdinalEncoder

ordinal_encoder = OrdinalEncoder ()
housing_cat_encoded = ordinal_encoder.fit_transform (housing_cat)
housing_cat_encoded [:10]

In[65]:

ordinal_encoder.categories_

In[66]:

from sklearn.preprocessing import OneHotEncoder

cat_encoder = OneHotEncoder ()
housing_cat_lhot = cat_encoder.fit_transform (housing_cat)
housing_cat_lhot

By default, the ‘OneHotEncoder’ class returns a sparse array, but we can convert
it to a dense array if needed by calling the ‘toarray()‘ method:

In[67]:
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housing_cat_lhot.toarray ()

Alternatively, you can set sparse=False when creating the OneHotEncoder:

In[68]:
cat_encoder = OneHotEncoder(sparse=False)
housing_cat_lhot = cat_encoder.fit_transform (housing_cat)

housing_cat_lhot

In[69]:

cat_encoder.categories_

Let’s create a custom transformer to add extra attributes:

In[70]:

from sklearn.base import BaseEstimator, TransformerMixin

# column index
rooms_ix , bedrooms_ix, population_ix, households_ix = 3, 4, 5, 6

class CombinedAttributesAdder (BaseEstimator, TransformerMixin):
# no xargs or xxkargs
def __init__(self, add_bedrooms_per_room = True):
self.add_bedrooms_per_room = add_bedrooms_per_room

def fit (self, X, y=None):
return self # nothing else to do

def transform (self, X):
rooms_per_household = \
X[:, rooms_ix] / X[:, households_ix]
population_per_household = \
X[:, population_ix] / X[:, households_ix]
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if self.add_bedrooms_per_room:
bedrooms_per_-room = X[:, bedrooms_ix] / X[:, rooms_ix]

return np.c_[X, rooms_per_household ,
population_per_household ,
bedrooms_per_room |

else:
return np.c_[X, rooms_per_household ,

population_per_household]

attr_adder = CombinedAttributesAdder (add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform (housing.values)

In[71]:

housing_extra_attribs = pd.DataFrame(

housing_extra_attribs

columns=list (housing.columns) + \
["rooms_per_household” ; ”population_per_household”],

index=housing.index)
housing_extra_attribs.head()

Now let’s build a pipeline for preprocessing the numerical attributes:

In[72]:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

num_pipeline = Pipeline (|
(’imputer’, SimpleImputer(strategy="median”)),
(Tattribs_adder’, CombinedAttributesAdder()),

(’std_scaler’, StandardScaler()),
1)

housing_num_tr = num_pipeline. fit_transform (housing_num)

In[73]:
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housing_num_tr

In[74]:

from sklearn.compose import ColumnTransformer

num_attribs = list (housing_num)
cat_attribs = [”ocean_proximity” ]
full_pipeline = ColumnTransformer (|

("num” ; num_pipeline, num_attribs),
(”cat”, OneHotEncoder(), cat_attribs),

1)

housing_prepared = full_pipeline.fit_transform (housing)

In[75]:

housing_prepared

In[76]:

housing_prepared . shape

For reference, here is the old solution based on a DataFrameSelector trans-
former (to just select a subset of the Pandas ‘DataFrame‘ columns), and a
FeatureUnion:

In[77]:

from sklearn.base import BaseEstimator, TransformerMixin
# Create a class to select numerical or categorical columns

class OldDataFrameSelector (BaseEstimator , TransformerMixin):
def __init__(self, attribute_names):
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self . attribute_names = attribute_names
def fit (self, X, y=None):

return self
def transform (self , X):

return X[self.attribute_.names]. values

Now let’s join all these components into a big pipeline that will preprocess both
the numerical and the categorical features:

In[78]:
num_attribs = list (housing_num)
cat_attribs = [”ocean_proximity” ]

old_num _pipeline = Pipeline (]
(’selector’, OldDataFrameSelector (num_attribs)),
(’imputer’, SimpleImputer(strategy="median”)),
(Tattribs_adder’, CombinedAttributesAdder()),
(’std_scaler’, StandardScaler()),

1)

old_cat_pipeline = Pipeline (|
(’selector’, OldDataFrameSelector(cat_attribs)),
(’cat_encoder’, OneHotEncoder(sparse=False)),

1)

In[79]:

from sklearn.pipeline import FeatureUnion

old_full_pipeline = FeatureUnion(transformer_list=]
("num _pipeline” , old _num_pipeline),
("cat_pipeline”, old_cat_pipeline),

1)

In[80]:

old_housing _prepared = old_full_pipeline.fit_transform (housing)
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old_housing_prepared

The result is the same as with the ColumnTransformer:

In[81]:

np. allclose (housing_prepared , old_housing_prepared)

2.6 Select and train a model

In[82]:

from sklearn.linear_model import LinearRegression

lin_.reg = LinearRegression ()
lin_reg . fit (housing_prepared , housing_labels)

In[83]:

Let’s try the full preprocessing pipeline on a few training instances.

some_data = housing.iloc [:5]

some_labels = housing_labels.iloc [:5]

some_data_prepared = full_pipeline.transform (some_data)
print (” Predictions:”, lin_reg.predict (some_data_prepared))

Compare against the actual values:

In[84]:

print (” Labels:” | list (some_labels))
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In[85]:

some_data_prepared

In[86]:

from sklearn.metrics import mean_squared_error

housing_predictions = lin_reg.predict (housing _prepared)

lin.mse = mean_squared_error (housing_labels, housing_predictions)
lin.rmse = np.sqrt(lin_mse)

lin_rmse

In[87]:

from sklearn.metrics import mean_absolute_error

lin_.mae = mean_absolute_error (housing_labels , housing_predictions)
lin_mae

In[88]:

from sklearn.tree import DecisionTreeRegressor

tree.reg = DecisionTreeRegressor (random_state=42)
tree_reg.fit (housing_prepared, housing_labels)

In[89]:

housing_predictions = tree_reg.predict (housing_prepared)

tree_mse = mean_squared_error (housing_labels, housing_predictions)
tree_.rmse = np.sqrt (tree_mse)

tree_rmse
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2.7 Fine-tune your model

In[90]:

from sklearn.model_selection import cross_val_score

scores = cross_val_score(tree_reg, housing_prepared, housing_labels ,
scoring="neg_mean_squared_error” , cv=10)

tree_rmse_scores = np.sqrt(—scores)

In[91]:

def display_scores(scores):

print (” Scores:”, scores)
print ("Mean:” , scores.mean())
print (” Standard._deviation:”, scores.std())

display_scores(tree_rmse_scores)

In[92]:

lin_scores = cross_val_score(lin_reg , housing_prepared, housing_labels ,
scoring="neg_mean_squared_error” , cv=10)

lin_rmse_scores = np.sqrt(—1lin_scores)

display_scores(lin_rmse_scores)

Note: we specify n_estimators=100 to be future-proof since the default value
is going to change to 100 in Scikit-Learn 0.22 (for simplicity, this is not shown
in the book).

In[93]:

from sklearn.ensemble import RandomForestRegressor
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forest_reg = RandomForestRegressor (n_estimators=100, random_state=42)
forest_reg . fit (housing_prepared, housing_labels)

In[94]:

housing_predictions = forest_reg.predict (housing_prepared)
forest_mse = mean_squared_error (housing_labels, housing_predictions)
forest_.rmse = np.sqrt(forest_mse)

forest_rmse

In[95]:

from sklearn.model_selection import cross_val_score

forest_scores = cross_val_score(forest_-reg , housing.prepared, housing_labels ,
scoring="neg_mean_squared_error” , cv=10)
forest_rmse_scores = np.sqrt(—forest_scores)

display_scores (forest_rmse_scores)

In[96]:

scores = cross_val_score(lin_reg , housing_prepared,
housing_labels ,
scoring="neg_mean_squared_error” ,
cv=10)

pd. Series (np.sqrt(—scores)).describe ()

In[97]:

from sklearn.svm import SVR
svim_reg = SVR(kernel="linear”)

svm_reg. fit (housing_prepared, housing_labels)
housing_predictions = svm_reg.predict (housing_prepared)
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svimm_mse = mean_squared_error (housing_labels, housing_predictions)
svm_rmse = np.sqrt (svm_mse)
svm_rmse

In[98]:

from sklearn.model_selection import GridSearchCV

param_grid = |
# try 12 (3 4 ) combinations of hyperparameters

{’n_estimators’: [3, 10, 30], 'max_features’: [2, 4, 6, 8]},
# then try 6 (2 3) combinations with bootstrap set as False
{’bootstrap’: [False],
‘n_estimators’: [3, 10],
"max_features’: [2, 3, 4]},
]
forest_reg = RandomForestRegressor (random_state=42)

# train across 5 folds, that’s a total of (1246)x5=90 rounds of training

grid_search = GridSearchCV (forest_reg , param_grid, cv=5,
scoring="neg_mean_squared_error ’,
return_train_score=True)

grid_search. fit (housing_prepared, housing_labels)

The best hyperparameter combination found:

In[99]:

grid_search .best_params._

In[100]:

grid_search.best_estimator._

Let’s look at the score of each hyperparameter combination tested during the
grid search:
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In[101]:

cvres = grid_search.cv_results_
for mean_score, params in zip(cvres[”mean_test_score”], cvres[”params”]):
print (np.sqrt(—mean_score), params)

In[102]:

pd.DataFrame(grid_search.cv_results_)

In[103]:

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint

param_distribs = {
"n_estimators’: randint (low=1, high=200),

"max_features’: randint (low=1, high=8),
4
forest_.reg = RandomForestRegressor (random_state=42)
rnd_search = \

RandomizedSearchCV (forest_reg ,
param_distributions=param_distribs ,
n_iter=10, cv=5H,
scoring="neg_mean_squared_error’,
random_state=42)

rnd_search. fit (housing_prepared , housing_labels)

In[104]:
cvres = rnd_search.cv_results_
for mean_score, params in zip(cvres[”mean_test_score”], cvres|[”params”]):

print (np.sqrt(—mean_score), params)
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In[105]:

feature_importances = grid_search.best_estimator_.feature_importances_
feature_importances

In[106]:

extra_attribs = ["rooms_per_hhold”, ”"pop_per_hhold”, ”bedrooms_per_room” |
#cat_encoder = cat_pipeline.named_steps[” cat_encoder”] # old solution
cat_encoder = full_pipeline.named_transformers_[”cat”]
cat_one_hot_attribs = list (cat_encoder.categories_[0])

attributes = num_attribs + extra_attribs + cat_one_hot_attribs

sorted (zip (feature_importances, attributes), reverse=True)

In[107]:

final_model = grid_search.best_estimator._

X _test = strat_test_set.drop(”median_house_value”, axis=1)
y-test = strat_test_set [?median_house_value”]. copy ()

X _test_prepared = full_pipeline.transform (X_test)
final_predictions = final_model.predict (X_test_prepared)

final_mse = mean_squared_error(y-test, final_predictions)
final_rmse = np.sqrt(final_mse)
In[108]:

final_rmse

We can compute a 95% confidence interval for the test RMSE:

In[109]:
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from scipy import stats

confidence = 0.95
squared_errors = (final_predictions — y_test) xx 2
np.sqrt(stats.t.interval (confidence, len(squared_errors) — 1,

loc=squared_errors .mean (),
scale=stats.sem(squared_errors)))

We could compute the interval manually like this:

In[110]:

m = len(squared_errors)

mean = squared_errors.mean()

tscore = stats.t.ppf((l + confidence) / 2, df=m — 1)
tmargin = tscore % squared_errors.std(ddof=1) / np.sqrt(m)
np.sqrt (mean — tmargin), np.sqrt(mean + tmargin)

Alternatively, we could use a z-scores rather than t-scores:

In[111]:

zscore = stats.norm.ppf((1 + confidence) / 2)
zmargin = zscore * squared_errors.std(ddof=1) / np.sqrt (m)
np.sqrt (mean — zmargin), np.sqrt(mean + zmargin)

2.8 Extra material

2.8.1 A full pipeline with both preparation and prediction

In[112]:

full _pipeline_with_predictor = Pipeline (]
(" preparation”, full_pipeline),
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(”linear”, LinearRegression())

1

full_pipeline_with_predictor. fit (housing, housing_labels)
full_pipeline_with_predictor.predict (some_data)

2.8.2 Model persistence using joblib

In[113]:

my_model = full_pipeline_with_predictor

In[114]:

import joblib
joblib .dump(my-model, "my_model.pkl”) # DIFF

my_model_loaded = joblib.load (”my_model.pkl”) # DIFF

2.8.3 Example SciPy distributions for ‘RandomizedSearchCV’

In[115]:

from scipy.stats import geom, expon

geom_distrib=geom (0.5).rvs (10000, random_state=42)
expon_distrib=expon(scale=1).rvs (10000, random_state=42)
plt . hist (geom_distrib, bins=50)

plt .show ()

plt.hist (expon_distrib, bins=50)

plt .show ()
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2.9 Exercise solutions

2.9.1 1.

Question: Try a Support Vector Machine regressor (‘sklearn.svm.SVR’), with
various hyperparameters such as kernel="linear” (with various values for the ‘C’
hyperparameter) or kernel="rbf” (with various values for the ‘C’ and ‘gamma’
hyperparameters). Don’t worry about what these hyperparameters mean for
now. How does the best ‘SVR‘ predictor perform?

In[116]:

from sklearn.model_selection import GridSearchCV

param_grid = |

{’kernel’: [’linear’],

'C’: [10., 30., 100., 300., 1000., 3000., 10000., 30000.0]},
{"kernel’: [’rbf’], 'C’: [1.0, 3.0, 10., 30., 100., 300., 1000.0],
‘gamma’: [0.01, 0.03, 0.1, 0.3, 1.0, 3.0]},

]

svm_reg = SVR()

grid_search = GridSearchCV (svm_reg, param_grid, cv=5,
scoring="neg_mean_squared_error’, verbose=2)

grid_search.fit (housing_prepared, housing_labels)

The best model achieves the following score (evaluated using 5-fold cross vali-
dation):

In[117]:

negative_mse = grid_search.best_score_
rmse = np.sqrt(—negative_mse)

rmse

That’s much worse than the ‘RandomForestRegressor.” Let’s check the best
hyperparameters found:

In[118]:
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grid_search .best_params._
The linear kernel seems better than the RBF kernel. Notice that the value of
‘C’ is the maximum tested value. When this happens you definitely want to

launch the grid search again with higher values for ‘C’ (removing the smallest
values), because it is likely that higher values of ‘C’” will be better.

2.9.2 2.

Question: Try replacing ‘GridSearchCV’ with ‘RandomizedSearchCV.’

In[119]:

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import expon, reciprocal

# see https://docs.scipy.org/doc/scipy/reference/stats.html
# for ‘expon()‘ and ‘reciprocal()‘ documentation and more
# probability distribution functions.

# Note: gamma is ignored when kernel is 7linear”
param_distribs = {

"kernel’: [’linear’, ’rbf’],

'C’: reciprocal (20, 200000),

‘gamma’: expon(scale=1.0),

}

svm_reg = SVR()

rnd_search = RandomizedSearchCV (svm_reg ,
param_distributions=param _distribs ,
n_iter=50, cv=5,
scoring="neg_mean_squared_error’,
verbose=2, random_state=42)

rnd_search. fit (housing_prepared , housing_labels)

The best model achieves the following score (evaluated using 5-fold cross vali-
dation):

In[120]:
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negative_mse = rnd_search.best_score._
rmse = np.sqrt(—negative_mse)
rmse

Now this is much closer to the performance of the ‘RandomForestRegressor’
(but not quite there yet). Let’s check the best hyperparameters found:

In[121]:

rnd_search.best_params_

This time the search found a good set of hyperparameters for the RBF kernel.
Randomized search tends to find better hyperparameters than grid search in
the same amount of time.

Let’s look at the exponential distribution we used, with scale=1.0. Note that
some samples are much larger or smaller than 1.0, but when you look at the
log of the distribution, you can see that most values are actually concentrated
roughly in the range of exp(-2) to exp(+2), which is about 0.1 to 7.4.

In[122]:

expon_distrib = expon(scale=1.)

samples = expon._distrib.rvs (10000, random_state=42)
plt.figure(figsize=(10, 4))

plt .subplot (121)

plt.title ("Exponential_distribution.(scale=1.0)")
plt.hist (samples, bins=50)

plt.subplot (122)

plt.title (?Log.of_this_distribution”)

plt. hist (np.log(samples), bins=50)

plt .show ()

The distribution we used for ‘C’ looks quite different: the scale of the samples is
picked from a uniform distribution within a given range, which is why the right
graph, which represents the log of the samples, looks roughly constant. This
distribution is useful when you don’t have a clue of what the target scale is:

In[123]:
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reciprocal_distrib = reciprocal (20, 200000)

samples = reciprocal_distrib.rvs (10000, random_state=42)
plt.figure (figsize=(10, 4))

plt.subplot (121)

plt.title (" Reciprocal_distribution.(scale=1.0)")

plt . hist (samples, bins=50)

plt.subplot (122)

plt.title ("Log.of_this_distribution”)

plt.hist (np.log(samples), bins=50)

plt .show ()

The reciprocal distribution is useful when you have no idea what the scale of
the hyperparameter should be (indeed, as you can see on the figure on the
right, all scales are equally likely, within the given range), whereas the expo-
nential distribution is best when you know (more or less) what the scale of the
hyperparameter should be.

2.9.3 3.

Question: Try adding a transformer in the preparation pipeline to select only
the most important attributes.

In[124]:

from sklearn.base import BaseEstimator, TransformerMixin

def indices_of_top_k (arr, k):

return np.sort(np.argpartition (np.array(arr), —k)[—k:])

class TopFeatureSelector (BaseEstimator, TransformerMixin ):

def __init__(self, feature_importances, k):

self.feature_importances = feature_importances
self .k = k

def fit (self, X, y=None):
self.feature_indices_. =\

indices_of_top_k(self.feature_.importances, self.k)

return self
def transform (self , X):
return X[:, self.feature_indices._|
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Note: this feature selector assumes that you have already computed the feature
importances somehow (for example using a ‘RandomForestRegressor’). You
may be tempted to compute them directly in the ‘TopFeatureSelector’ ’s ‘fit()’
method, however this would likely slow down grid /randomized search since the
feature importances would have to be computed for every hyperparameter com-
bination (unless you implement some sort of cache).

Let’s define the number of top features we want to keep:

In[125]:

k=5

Now let’s look for the indices of the top k features:

In[126]:

top-k_feature_indices = indices_of_top_k (feature_importances, k)
top_k_feature_indices

In[127]:

np.array (attributes )[top_k_feature_indices ]

Let’s double check that these are indeed the top k features:

In[128]:

sorted (zip (feature_importances, attributes), reverse=True)[:k]

Looking good. .. Now let’s create a new pipeline that runs the previously defined
preparation pipeline, and adds top k feature selection:

In[129]:
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preparation_and_feature_selection_pipeline = Pipeline (|
(’preparation’, full_pipeline),
(’feature_selection’, TopFeatureSelector (feature_importances, k))

1)

In[130]:

housing_prepared_top_k_features = \
preparation_and_feature_selection_pipeline.fit_transform (housing)

Let’s look at the features of the first 3 instances:

In[131]:

housing _prepared_top_k_features [0:3]

Now let’s double check that these are indeed the top k features:

In[132]:

housing_prepared [0:3, top_k_feature_indices]

Works great! :)

294 4.

Question: Try creating a single pipeline that does the full data preparation plus
the final prediction.

In[133]:
prepare_select_and_predict_pipeline = Pipeline (|
(’preparation’, full_pipeline),
("feature_selection’, TopFeatureSelector (feature_importances, k)),

(’svm_reg’, SVR(**rnd_search.best_params_))

50



In[134]:

prepare_select_and_predict_pipeline. fit (housing, housing_labels)

Let’s try the full pipeline on a few instances:

In[135]:
some_data = housing.iloc [:4]
some_labels = housing_labels.iloc [:4]

print (” Predictions:\t”,
prepare_select_and_predict_pipeline.predict (some_data))
print (” Labels:\t\t”, list (some_labels))

Well, the full pipeline seems to work fine. Of course, the predictions are not
fantastic: they would be better if we used the best ‘RandomForestRegressor’
that we found earlier, rather than the best ‘SVR.’

2.9.5 5.

Question: Automatically explore some preparation options using ‘GridSearchCV.’

In[136]:

param_grid = [{
"preparation__num__imputer__strategy’: [’mean’, ’'median’, ’'most_frequent’],
"feature_selection__k ’: list (range(1l, len(feature_importances) + 1))

}]

grid_search_prep = GridSearchCV (prepare_select_and_predict_pipeline ,
param_grid , cv=5,
scoring="neg_mean_squared_error
grid_search_prep. fit (housing, housing_labels)

)

, verbose=2)
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In[137]:

grid_search_prep.best_params._

The best imputer strategy is ‘most_frequent’ and apparently almost all features
are useful (15 out of 16). The last one (‘ISLAND’) seems to just add some noise.

Congratulations! You already know quite a lot about Machine Learning. :)
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