
Lesson 07

Notes on Chapter 4

CSC357 Advanced Topics—Machine Learning

23 January 2020

• so far, looked at ML models like black boxes

• can do a lot without knowing much about how models work!

– predict price of housing

– recognize a hand-drawn numeral

– distinguish spam from other e-mail

• more knowledge will help us choose. . .

– right model

– right training algorithm

– right values for hyperparameters (tune model)

• more knowledge will help us. . .

– debug

– understand / analyze errors

• need to know more to build and train neural networks

• start with Linear Regression (one of simplest models)

• 2 ways to train Linear Regression models

– “closed form” — directly compute coefficients

– iteratively — successively better approximations (Gradient Descent)

• both methods should yield same results

• training means finding values for model parameters that minimize the cost
function over the training set

• 3 variants of Gradient Descent now and again in later chapters when we
study neural networks

1



– Batch GD

– Mini-batch GD

– Stochastic GD

• Polynomial Regression

– works when relationships are non-linear

– more complex than Linear Regression

– more parameters

– more prone to overfitting

∗ use learning curves to detect overfitting

∗ use regularization techniques to reduce risks of overfitting

• 2 more models for classification

– Logistic Regression

– Softmax Regression

• what kind of math do we need?

– vectors and matrices

∗ products

∗ transposes

∗ inverses

– calculus

∗ derivatives (rates of change of a function of one variable)

∗ partial derivatives (rates of change of a function of several vari-
ables)

• dot product of 2 vectors

~u = (u0, u1, u2, . . . , un)

~v = (v0, v1, v2, . . . , vn)

~u · ~v = u0v0 + u1v1 + u2v2 + . . .+ unvn

~u · ~v = ~v · ~u (commutative operation)

• column vectors, transposes, and dot products

2



~u =

 2
3
4


~v =

 6
7
8


~uT~v =

[
2 3 4

]  6
7
8


= 2 · 6 + 3 · 7 + 4 · 8

= 65

• if A, B, and C are n× n matrices and AB = C then . . .

– each element of C is the dot product of a row in A with a column in
B

– let ci,j be the element in the ith row and the jth column in C

– let ai,k be the element in the ith row and the kth column in A

– let bk,j be the element in the kth row and the jth column in B

– then. . .

ci,j = ai,0b0,j + ai,1b1,j + . . .+ ai,n−1bn−1,j

• transpose of a matrix

– rows become columns

– columns become rows

– elements reflected across line drawn from upper left corner to lower
right corner of matrix

[
a b
c d

]T
=

[
a c
b d

]
• identity matrix I

– all elements of I are zeroes except for those on the main diagonal
(row index = column index)

– all elements on main diagonal are ones

– for any matrix A. . .AI = IA = A

3



• some (but not all) matrices have inverses

[
a b
c d

]−1

=
1

ad− bc

[
d −b

−c a

]
• a simple regression model of life satisfaction—

life satisfaction = θ0 + θ1 ·GDP per capita

• a linear function of the input feature GDP per capita

• θ0 and θ1 are models parameters

• linear model makes a prediction by computing weighted sum of the input
features, plus a constant

• constant is the bias term (also called the intercept term)

ŷ = θ0 + θ1x1 + θ2x2 + · · · + θnxn

• In this equation:

– ŷ is the predicted value.

– n is the number of features.

– xi is the ith feature value.

– θj is the jth model parameter (including the bias term θ0 and the
feature weights θ1, θ2, · · · , θn).

• more concisely written using a vectorized form

ŷ = hθ(x)

= θ · x

• In this equation:

– θ is the models parameter vector, containing the bias term θ0 and the
feature weights θ1 to θn.

– x is the instances feature vector, containing x0 to xn, with x0 always
equal to 1.

– θ · x is the dot product of the vectors θ and x, which is of course
equal to θ0x0 + θ1x1 + θ2x2 + · · · + θnxn

– hθ is the hypothesis function, using the model parameters θ.

4


