Lesson 07
 Notes on Chapter 4

CSC357 Advanced Topics-Machine Learning

23 January 2020

- so far, looked at ML models like black boxes
- can do a lot without knowing much about how models work!
- predict price of housing
- recognize a hand-drawn numeral
- distinguish spam from other e-mail
- more knowledge will help us choose...
- right model
- right training algorithm
- right values for hyperparameters (tune model)
- more knowledge will help us...
- debug
- understand / analyze errors
- need to know more to build and train neural networks
- start with Linear Regression (one of simplest models)
- 2 ways to train Linear Regression models
- "closed form" - directly compute coefficients
- iteratively - successively better approximations (Gradient Descent)
- both methods should yield same results
- training means finding values for model parameters that minimize the cost function over the training set
- 3 variants of Gradient Descent now and again in later chapters when we study neural networks
- Batch GD
- Mini-batch GD
- Stochastic GD
- Polynomial Regression
- works when relationships are non-linear
- more complex than Linear Regression
- more parameters
- more prone to overfitting
* use learning curves to detect overfitting
* use regularization techniques to reduce risks of overfitting
- 2 more models for classification
- Logistic Regression
- Softmax Regression
- what kind of math do we need?
- vectors and matrices
* products
* transposes
* inverses
- calculus
* derivatives (rates of change of a function of one variable)
* partial derivatives (rates of change of a function of several variables)
- dot product of 2 vectors

$$
\begin{aligned}
\vec{u} & =\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right) \\
\vec{v} & =\left(v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right) \\
\vec{u} \cdot \vec{v} & =u_{0} v_{0}+u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n} \\
\vec{u} \cdot \vec{v} & =\vec{v} \cdot \vec{u} \quad \text { (commutative operation) }
\end{aligned}
$$

- column vectors, transposes, and dot products

$$
\begin{aligned}
\vec{u} & =\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] \\
\vec{v} & =\left[\begin{array}{l}
6 \\
7 \\
8
\end{array}\right] \\
\vec{u}^{T} \vec{v} & =\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
6 \\
7 \\
8
\end{array}\right] \\
& =2 \cdot 6+3 \cdot 7+4 \cdot 8 \\
& =65
\end{aligned}
$$

- if \mathbf{A}, \mathbf{B}, and \mathbf{C} are $n \times n$ matrices and $\mathbf{A B}=\mathbf{C}$ then \ldots
- each element of \mathbf{C} is the dot product of a row in \mathbf{A} with a column in B
- let $c_{i, j}$ be the element in the $i^{t h}$ row and the $j^{t h}$ column in \mathbf{C}
- let $a_{i, k}$ be the element in the $i^{t h}$ row and the $k^{t h}$ column in \mathbf{A}
- let $b_{k, j}$ be the element in the $k^{t h}$ row and the $j^{t h}$ column in \mathbf{B}
- then...

$$
c_{i, j}=a_{i, 0} b_{0, j}+a_{i, 1} b_{1, j}+\ldots+a_{i, n-1} b_{n-1, j}
$$

- transpose of a matrix
- rows become columns
- columns become rows
- elements reflected across line drawn from upper left corner to lower right corner of matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{T}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

- identity matrix I
- all elements of I are zeroes except for those on the main diagonal (row index $=$ column index)
- all elements on main diagonal are ones
- for any matrix $\mathbf{A} \ldots \mathbf{A I}=\mathbf{I} \mathbf{A}=\mathbf{A}$
- some (but not all) matrices have inverses

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

- a simple regression model of life satisfaction-

$$
\text { life_satisfaction }=\theta_{0}+\theta_{1} \cdot G D P _p e r _c a p i t a
$$

- a linear function of the input feature GDP_per_capita
- θ_{0} and θ_{1} are models parameters
- linear model makes a prediction by computing weighted sum of the input features, plus a constant
- constant is the bias term (also called the intercept term)

$$
\hat{y}=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{n} x_{n}
$$

- In this equation:
$-\hat{y}$ is the predicted value.
-n is the number of features.
$-x_{i}$ is the $i^{t h}$ feature value.
$-\theta_{j}$ is the $j^{\text {th }}$ model parameter (including the bias term θ_{0} and the feature weights $\left.\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)$.
- more concisely written using a vectorized form

$$
\begin{aligned}
\hat{y} & =h_{\theta}(\mathbf{x}) \\
& =\theta \cdot \mathbf{x}
\end{aligned}
$$

- In this equation:
$-\theta$ is the models parameter vector, containing the bias term θ_{0} and the feature weights θ_{1} to θ_{n}.
$-\mathbf{x}$ is the instances feature vector, containing x_{0} to x_{n}, with x_{0} always equal to 1 .
$-\theta \cdot \mathbf{x}$ is the dot product of the vectors θ and \mathbf{x}, which is of course equal to $\theta_{0} x_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{n} x_{n}$
- h_{θ} is the hypothesis function, using the model parameters θ.

