Lesson 07 Notes on Chapter 4

CSC357 Advanced Topics—Machine Learning

23 January 2020

- so far, looked at ML models like black boxes
- can do a lot without knowing much about how models work!
 - predict price of housing
 - recognize a hand-drawn numeral
 - distinguish spam from other e-mail
- more knowledge will help us choose...
 - right model
 - right training algorithm
 - right values for hyperparameters (tune model)
- more knowledge will help us...
 - debug
 - understand / analyze errors
- need to know more to build and train neural networks
- start with Linear Regression (one of simplest models)
- 2 ways to train Linear Regression models
 - "closed form" directly compute coefficients
 - iteratively successively better approximations (Gradient Descent)
- both methods should yield same results
- training means finding values for model parameters that minimize the cost function over the training set
- 3 variants of Gradient Descent now and again in later chapters when we study neural networks

- Batch GD
- Mini-batch GD
- Stochastic GD
- Polynomial Regression
 - works when relationships are non-linear
 - more complex than Linear Regression
 - more parameters
 - more prone to overfitting
 - * use learning curves to detect overfitting
 - * use regularization techniques to reduce risks of overfitting
- 2 more models for classification
 - Logistic Regression
 - Softmax Regression
- what kind of math do we need?
 - vectors and matrices
 - * products
 - * transposes
 - * inverses
 - calculus
 - * derivatives (rates of change of a function of one variable)
 - * partial derivatives (rates of change of a function of several variables)
- dot product of 2 vectors

$$\vec{u} = (u_0, u_1, u_2, \dots, u_n)$$

$$\vec{v} = (v_0, v_1, v_2, \dots, v_n)$$

$$\vec{u} \cdot \vec{v} = u_0 v_0 + u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \quad \text{(commutative operation)}$$

 \bullet column vectors, transposes, and dot products

$$\vec{u} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

$$\vec{v} = \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix}$$

$$\vec{u}^T \vec{v} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix}$$

$$= 2 \cdot 6 + 3 \cdot 7 + 4 \cdot 8$$

$$= 65$$

- if **A**, **B**, and **C** are $n \times n$ matrices and $\mathbf{AB} = \mathbf{C}$ then . . .
 - each element of ${\bf C}$ is the dot product of a row in ${\bf A}$ with a column in ${\bf B}$
 - let $c_{i,j}$ be the element in the i^{th} row and the j^{th} column in **C**
 - let $a_{i,k}$ be the element in the i^{th} row and the k^{th} column in $\bf A$
 - let $b_{k,j}$ be the element in the k^{th} row and the j^{th} column in ${\bf B}$
 - then...

$$c_{i,j} = a_{i,0}b_{0,j} + a_{i,1}b_{1,j} + \ldots + a_{i,n-1}b_{n-1,j}$$

- transpose of a matrix
 - rows become columns
 - columns become rows
 - elements reflected across line drawn from upper left corner to lower right corner of matrix

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^T = \left[\begin{array}{cc} a & c \\ b & d \end{array}\right]$$

- identity matrix I
 - all elements of **I** are zeroes except for those on the main diagonal (row index = column index)
 - all elements on main diagonal are ones
 - for any matrix $\mathbf{A} \dots \mathbf{AI} = \mathbf{IA} = \mathbf{A}$

• some (but not all) matrices have inverses

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right]$$

• a simple regression model of life satisfaction—

$$life_satisfaction = \theta_0 + \theta_1 \cdot GDP_per_capita$$

- a linear function of the input feature GDP_per_capita
- θ_0 and θ_1 are models parameters
- linear model makes a prediction by computing weighted sum of the input features, plus a constant
- constant is the bias term (also called the intercept term)

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- In this equation:
 - $-\hat{y}$ is the predicted value.
 - n is the number of features.
 - $-x_i$ is the i^{th} feature value.
 - $-\theta_j$ is the j^{th} model parameter (including the bias term θ_0 and the feature weights $\theta_1, \theta_2, \dots, \theta_n$).
- more concisely written using a vectorized form

$$\hat{y} = h_{\theta}(\mathbf{x})$$
$$= \theta \cdot \mathbf{x}$$

- In this equation:
 - $-\theta$ is the models parameter vector, containing the bias term θ_0 and the feature weights θ_1 to θ_n .
 - \mathbf{x} is the instances feature vector, containing x_0 to x_n , with x_0 always equal to 1.
 - $-\theta \cdot \mathbf{x}$ is the dot product of the vectors θ and \mathbf{x} , which is of course equal to $\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$
 - $-h_{\theta}$ is the hypothesis function, using the model parameters θ .