Lesson 07
 Notes on Chapter 4

CSC357 Advanced Topics-Machine Learning

24 January 2020

- often represent vectors as column vectors
- column vectors are 2 D arrays with a single column
- if θ and \mathbf{x} are column vectors then prediction is...
$-\hat{y}=\theta^{T} \mathbf{x}$, where θ^{T}
- and it is the transpose of θ (a row vector instead of a column vector)
$-\theta^{T} \mathbf{x}$ is the matrix multiplication of θ^{T} and \mathbf{x}.
- same prediction, represented as a single-cell matrix rather than a scalar value
- use this notation to avoid switching between dot products and matrix multiplications
- how to train Linear Regression model?
- training means setting parameters to get best fit to training set
- most common performance measure is Root Mean Square Error (RMSE)
- find value of θ that minimizes the RMSE
- simpler to minimize the mean squared error (MSE) than the RMSE
- (value that minimizes a function also minimizes its square root)
- MSE cost function for a Linear Regression model...

$$
\operatorname{MSE}\left(\mathbf{X}, h_{\theta}=\frac{1}{m} \sum_{i=1}^{m}\left(\theta^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2}\right.
$$

- we write h_{θ} instead of just h to clear that model is parametrized by the vector θ
- to simplify, just write $\operatorname{MSE}(\theta)$ instead of $\operatorname{MSE}\left(\mathbf{X}, h_{\theta}\right)$
- closed-form solution (to the problem of training a Linear Regression model) is called the Normal Equation

$$
\hat{\theta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- in this equation...
$-\hat{\theta}$ is the value of θ that minimizes cost function
$-\mathbf{y}$ is the vector of target values containing $y^{(i)}$ to $y^{(m)}$
- generate some linear-looking data to test this equation...
- function to generate the data is $y=4+3 x_{1} 1+$ Gaussian noise
import numpy as np

```
X=2 * np.random.rand (100, 1)
y = 4 + 3* X + np.random.randn(100, 1)
```

- compute $\hat{\theta}$ using Normal Equation...
- use NumPy's inv() function (from np.linalg module) to compute matrix inverse
- dot() method for matrix multiplication:

```
# add x0 = 1 to each instance
X_b = np.c_[np.ones((100, 1)), X]
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot (y)
```

- see what the equation found-

$$
\begin{aligned}
& \text { theta_best } \\
& \text { array }([[4.21509616],
\end{aligned}
$$

$$
[2.77011339]])
$$

- hoped for $\theta_{0}=4$ and $\theta_{1}=3\left(\right.$ instead of $\theta_{0}=4.215$ and $\left.\theta_{1}=2.770\right)$
- close enough! (noise accounts for difference)
- now make predictions using $\hat{\theta} \ldots$

```
X_new \(=\) np. array \(([[0], \quad[2]])\)
\# add \(x 0=1\) to each instance
X_new_b \(=\) np. \(c_{-}[n p\). ones \(((2,1))\), X_new \(]\)
y_predict \(=\) X_new_b. dot (theta_best)
y_predict
array ([[4.21509616],
    [9.75532293]])
```

- plot this models predictions...

```
plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")
plt.axis([0, 2, 0, 15])
plt.show()
```

- performing Linear Regression using Scikit-Learn is simple...

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.intercept_, lin_reg.coef_
    (array([4.21509616]), array([[2.77011339]]))
lin_reg.predict(X_new)
array ([[4.21509616],
    [9.75532293]])
```

- LinearRegression class based on scipy. linalg. lstsq ()
- scipy. linalg . lstsq () stands for "least squares"
- can call scipy . linalg . lstsq () directly...
theta_best_svd, residuals, rank, $s=n p . l i n a l g . l s t s q\left(X _b, y\right.$, rcond=1e-6)
theta_best_svd
array ([[4.21509616] ,
[2.77011339]])
- function above computes $\hat{\theta}=\mathbf{X}^{+} \mathbf{y}$
$-\mathbf{X}^{+}$is pseudoinverse of \mathbf{X}
- (specifically, the Moore-Penrose inverse)
- can compute pseudoinverse directly with np. linalg . pinv()

```
np.linalg.pinv(X_b).dot(y)
array ([[4.21509616],
    [2.77011339]])
```

- pseudoinverse computed using a standard matrix factorization technique
- technique is Singular Value Decomposition (SVD)
- decomposes training set matrix \mathbf{X} into product of 3 matrices
- here's the product: $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$
- see numpy.linalg.svd()
- pseudoinverse is computed as $\mathbf{X}^{+}=\mathbf{V} \boldsymbol{\Sigma}^{+} \mathbf{U}^{T}$
- to compute matrix $\boldsymbol{\Sigma}^{+}$
* algorithm takes $\boldsymbol{\Sigma}$ and sets to zero all values $<$ tiny threshold value,
* then replaces all nonzero values with their inverse
* finally transposes the resulting matrix
- approach more efficient than computing Normal Equation
- plus, handles edge cases nicely
- indeed, the Normal Equation may not work if matrix $\mathbf{X}^{T} \mathbf{X}$ is not invertible (i.e., singular), such as if $m<n$ or if some features are redundant
- Normal Equation computes inverse of $\mathbf{X}^{T} \mathbf{X}$
- that is a $(n+1) \times(n+1)$ matrix
- (n is the number of features)
- computational complexity of inverting such a matrix typically about $O\left(n^{2.4}\right)$ to $O\left(n^{3}\right)$
- (doubling number of features multiplies computation time by roughly $2^{2.4}=5.3$ to $2^{3}=8$)
- SVD approach used by Scikit-Learns LinearRegression class is about $O\left(n^{2}\right)$
- (doubling number of features multiplies computation time by roughly 4)
- both the Normal Equation and SVD approach very slow when number of features grows large (e.g., 100, 000)
- on positive side, both linear with regard to number of instances in training set (they are $O(m)$)
- so they handle large training sets efficiently (provided they can fit in memory)
- once trained, Linear Regression model predictions are very fast
- computational complexity linear with regard to both number of instances (on which to make predictions) and number of features
- $2 \times$ as many predictions (or $2 \times$ features) takes $2 \times$ time

