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• often represent vectors as column vectors

• column vectors are 2D arrays with a single column

• if θ and x are column vectors then prediction is. . .

– ŷ = θTx, where θT

– and it is the transpose of θ (a row vector instead of a column vector)

– θTx is the matrix multiplication of θT and x.

– same prediction, represented as a single-cell matrix rather than a
scalar value

– use this notation to avoid switching between dot products and matrix
multiplications

• how to train Linear Regression model?

• training means setting parameters to get best fit to training set

• most common performance measure is Root Mean Square Error (RMSE)

• find value of θ that minimizes the RMSE

• simpler to minimize the mean squared error (MSE) than the RMSE

• (value that minimizes a function also minimizes its square root)

• MSE cost function for a Linear Regression model. . .

MSE(X, hθ =
1

m

m∑
i=1

(θTx(i) − y(i))2

• we write hθ instead of just h to clear that model is parametrized by the
vector θ
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• to simplify, just write MSE(θ) instead of MSE(X, hθ)

• closed-form solution (to the problem of training a Linear Regression model)
is called the Normal Equation

θ̂ = (XTX)−1XTy

• in this equation. . .

– θ̂ is the value of θ that minimizes cost function

– y is the vector of target values containing y(i) to y(m)

• generate some linear-looking data to test this equation. . .

– function to generate the data is y = 4 + 3x11+ Gaussian noise

import numpy as np

X = 2 ∗ np . random . rand (100 , 1)
y = 4 + 3 ∗ X + np . random . randn (100 , 1)

• compute θ̂ using Normal Equation. . .

– use NumPy’s inv() function (from np. linalg module) to compute
matrix inverse

– dot() method for matrix multiplication:

# add x0 = 1 to each ins tance
X b = np . c [ np . ones ( (100 , 1 ) ) , X]
t h e t a b e s t = np . l i n a l g . inv ( X b .T. dot ( X b ) ) . dot ( X b .T) . dot ( y )

• see what the equation found—

t h e t a b e s t
array ( [ [ 4 . 2 1 5 0 9 6 1 6 ] , [ 2 . 7 7 0 1 1 3 3 9 ] ] )

• hoped for θ0 = 4 and θ1 = 3 (instead of θ0 = 4.215 and θ1 = 2.770)

• close enough! (noise accounts for difference)

• now make predictions using θ̂. . .

X new = np . array ( [ [ 0 ] , [ 2 ] ] )
# add x0 = 1 to each ins tance
X new b = np . c [ np . ones ( ( 2 , 1 ) ) , X new ]
y p r e d i c t = X new b . dot ( t h e t a b e s t )
y p r e d i c t
array ( [ [ 4 . 2 1 5 0 9 6 1 6 ] ,

[ 9 . 7 5 5 3 2 2 9 3 ] ] )
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• plot this models predictions. . .

p l t . p l o t (X new , y pred i c t , ”r−” )
p l t . p l o t (X, y , ”b . ” )
p l t . a x i s ( [ 0 , 2 , 0 , 1 5 ] )
p l t . show ( )

• performing Linear Regression using Scikit-Learn is simple. . .

from s k l e a rn . l i n ea r mode l import LinearRegre s s i on

l i n r e g = LinearRegre s s i on ( )
l i n r e g . f i t (X, y )
l i n r e g . i n t e r c e p t , l i n r e g . c o e f

( array ( [ 4 . 2 1 5 0 9 6 1 6 ] ) , array ( [ [ 2 . 7 7 0 1 1 3 3 9 ] ] ) )
l i n r e g . p r e d i c t (X new)
array ( [ [ 4 . 2 1 5 0 9 6 1 6 ] ,

[ 9 . 7 5 5 3 2 2 9 3 ] ] )

• LinearRegression class based on scipy . linalg . lstsq ()

• scipy . linalg . lstsq () stands for “least squares”

• can call scipy . linalg . lstsq () directly. . .

the ta be s t svd , r e s i d u a l s , rank , s = np . l i n a l g . l s t s q (X b , y ,
rcond=1e−6)

t h e t a b e s t s v d
array ( [ [ 4 . 2 1 5 0 9 6 1 6 ] ,

[ 2 . 7 7 0 1 1 3 3 9 ] ] )

• function above computes θ̂ = X+y

– X+ is pseudoinverse of X

– (specifically, the Moore-Penrose inverse)

• can compute pseudoinverse directly with np. linalg .pinv()

np . l i n a l g . pinv ( X b ) . dot ( y )
array ( [ [ 4 . 2 1 5 0 9 6 1 6 ] ,

[ 2 . 7 7 0 1 1 3 3 9 ] ] )

• pseudoinverse computed using a standard matrix factorization technique

– technique is Singular Value Decomposition (SVD)

– decomposes training set matrix X into product of 3 matrices

– here’s the product: UΣVT

– see numpy.linalg.svd()
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– pseudoinverse is computed as X+ = VΣ+UT

– to compute matrix Σ+

∗ algorithm takes Σ and sets to zero all values < tiny threshold
value,

∗ then replaces all nonzero values with their inverse

∗ finally transposes the resulting matrix

• approach more efficient than computing Normal Equation

• plus, handles edge cases nicely

• indeed, the Normal Equation may not work if matrix XTX is not invertible
(i.e., singular), such as if m < n or if some features are redundant

• Normal Equation computes inverse of XTX

• that is a (n+ 1) × (n+ 1) matrix

• (n is the number of features)

• computational complexity of inverting such a matrix typically aboutO(n2.4)
to O(n3)

• (doubling number of features multiplies computation time by roughly
22.4 = 5.3 to 23 = 8)

• SVD approach used by Scikit-Learns LinearRegression class is aboutO(n2)

• (doubling number of features multiplies computation time by roughly 4)

• both the Normal Equation and SVD approach very slow when number of
features grows large (e.g., 100, 000)

• on positive side, both linear with regard to number of instances in training
set (they are O(m))

• so they handle large training sets efficiently (provided they can fit in mem-
ory)

• once trained, Linear Regression model predictions are very fast

• computational complexity linear with regard to both number of instances
(on which to make predictions) and number of features

• 2× as many predictions (or 2× features) takes 2× time
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