Lesson 07
Notes on Chapter 4

CSC357 Advanced Topics—Machine Learning

24 January 2020

e often represent vectors as column vectors
e column vectors are 2D arrays with a single column

e if § and x are column vectors then prediction is. ..

— 9 = 6Tx, where 67
— and it is the transpose of 6 (a row vector instead of a column vector)
— 0Tx is the matrix multiplication of 7 and x.

— same prediction, represented as a single-cell matrix rather than a
scalar value

— use this notation to avoid switching between dot products and matrix
multiplications

e how to train Linear Regression model?

e training means setting parameters to get best fit to training set

e most common performance measure is Root Mean Square Error (RMSE)
e find value of § that minimizes the RMSE

e simpler to minimize the mean squared error (MSE) than the RMSE

e (value that minimizes a function also minimizes its square root)

e MSE cost function for a Linear Regression model. ..

1 & , .
MSE(X,hg=— Y (6"x® —)2
(X,ho = —) (07x —y™)

i=1

e we write hy instead of just h to clear that model is parametrized by the
vector 6

e to simplify, just write M SE(0) instead of MSE(X, hg)

e closed-form solution (to the problem of training a Linear Regression model)
is called the Normal Equation

6= (XTX)"'xTy
e in this equation. ..

— @ is the value of that minimizes cost function

— y is the vector of target values containing 3 to 3™
e generate some linear-looking data to test this equation. ..
— function to generate the data is y = 4 + 3z114 Gaussian noise

import numpy as np

X
y

2 % np.random.rand (100, 1)
4 + 3 % X + np.random.randn (100, 1)

e compute 6 using Normal Equation. . .
— use NumPy’s inv() function (from np.linalg module) to compute
matrix inverse
— dot() method for matrix multiplication:
add z0 = 1 to each instance

X.b = np.c-[np.ones((100, 1)), X]
theta_best = np.linalg.inv(X.b.T.dot(X.b)).dot(X.b.T).dot(y)

see what the equation found—

theta_best
array ([[4.21509616], [2.77011339]])

hoped for 6y = 4 and 6; = 3 (instead of 6y = 4.215 and 0, = 2.770)

close enough! (noise accounts for difference)

e now make predictions using 6. ..

X.new = np.array ([[0], [2]])
add 0 = 1 to each instance
X new.b = np.c_[np.ones((2, 1)), X new|
y-predict = X_new_b.dot(theta_best)
y_predict
array ([[4.21509616],

[9.75532293]])

e plot this models predictions. ..

plt.plot (Xmew, y_predict, "r—")
plt.plot (X, y, ”b.”)

plt.axis ([0, 2, 0, 15])
plt.show ()

e performing Linear Regression using Scikit-Learn is simple. . .

from sklearn.linear_model import LinearRegression

lin_.reg = LinearRegression ()
lin_reg. fit (X, y)
lin_.reg.intercept_, lin_reg.coef_

(array ([4.21509616]), array ([[2.77011339]]))
lin_reg.predict (X_new)
array ([[4.21509616],
[9.75532293]])

LinearRegression class based on scipy . linalg . Istsq ()
scipy . linalg . Istsq () stands for “least squares”

can call scipy. linalg . Istsq () directly. ..

theta_best_svd , residuals, rank, s = np.linalg.lstsq(X.b, y,
rcond=1e—6)

theta_best_svd

array ([[4.21509616],
[2.77011339]])

function above computes 6 = Xty

— X7 is pseudoinverse of X

— (specifically, the Moore-Penrose inverse)

can compute pseudoinverse directly with np.linalg . pinv()

np.linalg.pinv(X.b).dot(y)
array ([[4.21509616],
[2.77011339]])

pseudoinverse computed using a standard matrix factorization technique

— technique is Singular Value Decomposition (SVD)
— decomposes training set matrix X into product of 3 matrices

here’s the product: USVT

see numpy.linalg.svd()

— pseudoinverse is computed as XT = VETU”T
— to compute matrix 3+

* algorithm takes ¥ and sets to zero all values < tiny threshold
value,

* then replaces all nonzero values with their inverse
x finally transposes the resulting matrix

approach more efficient than computing Normal Equation
plus, handles edge cases nicely

indeed, the Normal Equation may not work if matrix X7 X is not invertible
(i.e., singular), such as if m < n or if some features are redundant

Normal Equation computes inverse of X7X
that is a (n 4+ 1) x (n 4 1) matrix
(n is the number of features)

computational complexity of inverting such a matrix typically about O(n?4)
to O(n?)

(doubling number of features multiplies computation time by roughly
224 =53 to 2% = 8)

SVD approach used by Scikit-Learns LinearRegression class is about O(n?)
(doubling number of features multiplies computation time by roughly 4)

both the Normal Equation and SVD approach very slow when number of
features grows large (e.g., 100,000)

on positive side, both linear with regard to number of instances in training
set (they are O(m))

so they handle large training sets efficiently (provided they can fit in mem-
ory)

once trained, Linear Regression model predictions are very fast

computational complexity linear with regard to both number of instances
(on which to make predictions) and number of features

2x as many predictions (or 2x features) takes 2x time

