Lesson 07 Notes on Chapter 4 Gradient Descent

CSC357 Advanced Topics—Machine Learning

24 January 2020

- Gradient Descent is very different way to train a Linear Regression model
- better suited for cases where there are...
 - a large number of features
 - or too many training instances to fit in memory
- a generic optimization algorithm
- capable of finding optimal solutions to wide range of problems
- tweak parameters iteratively in order to minimize a cost function
- suppose you are lost in mountains in dense fog
- can only feel the slope of the ground below your feet
- good strategy: get to bottom of valley quickly by going downhill in direction of steepest slope
- measures local gradient of error function with respect to parameter vector $\boldsymbol{\theta}$
- goes in direction of descending gradient
- once the gradient is zero, you have reached a minimum!
- start by filling θ with random values (random initialization)
- then, small steps
- at each step, try to decrease cost (MSE)
- learning step size proportional to slope of cost function

- steps gradually get smaller
- size of steps is important parameter (learning rate hyperparameter)
- steps too small \rightarrow many iterations / slow convergence to solution
- learning rate too high (steps too large) → might "jump across valley"
- "jump across valley" \equiv miss point at which cost is minimum
- steps too large \rightarrow possibility of divergence (cost increases)
- there may be many local minima—we want global minima
- fortunately, MSE cost function for Linear Regression is convex
 - pick any two points on curve \rightarrow line segment joining them never crosses curve
 - no local minima, just one global minimum
 - a continuous function with slope that never changes abruptly
 - Gradient Descent guaranteed to approach arbitrarily close to global minimum!
 - (if we wait long enough and learning rate not too high)
- cost function has shape of a bowl,
 - but can be an elongated bowl if features have very different scales
 - rate of convergence can depend upon starting point
 - avoid this by ensuring all features have similar scale
 - (for example, by using Scikit-Learns StandardScaler class)
- training means searching for combination of model parameters that minimizes a cost function (over training set)
- a search in the model's parameter space
- more parameters \rightarrow more dimensions
- more parameters \rightarrow harder search