
Lesson 04

CSC140 Foundations of Computer Science

17 February 2020

What we have learned thus far.

Variables

A variable is a named location in the computer’s memory.

A variable has six attributes:

1. name—our style guide recommends descriptive names constructed by con-
necting words with underscores and for the use of lower case letters (e.g.,
sales tax rather than st)

2. type

3. value

4. location (address)—we will neither specify nor examine the addresses of
our variables, but will instead let the interpreter manage addresses for us

5. scope—in which part of the source code is the variable defined? (answers
the question: where?)

6. lifetime—during which part of the program’s execution is the variable
defined? (answers the question: when?)

Types

The type of a variable determines:

• the amount of memory that the variable requires

• how the variable’s value is encoded in the computer’s memory

• which operations can be used to alter the variable’s value or combine the
value with other values

1

We have already seen the int, float, and @str types.

You can guess what the bool type is. Enter this code in the interpreter:

2 + 2 == 4
type (2 + 2 == 4)
9 < 8
type (9 < 8)

What is the bool type?

These types (with some small changes in spelling) are common to most pro-
gramming languages.

Other popular programming languages place a limit on the magnitude of an
integer that can be stored in an int variable. This is not the case in Python.

Internally, the interpreter represents float (floating point) variables with scien-
tific notation. A student in a chemistry writes Avogrado’s number as 6.022·1023.
(That’s a lot better than writing 6 followed by 23 more digits!) The 6.022 is
the mantissa. The 23 is the exponent. Similarly, the representation of a floating
point value in the computer’s memory contains a mantissa and an exponent.

Each integer value is an exact value. Floating point variables give programmers
a way to represent real numbers approximately. Because there are an infinite
number of real numbers between any two given real numbers, it is not possible
to represent all real numbers exactly with mantissas whose size must necessarily
be finite.

Operators

A programming language provides arithmetic, relational, and logical operators.
Here are Python’s opertors:

arithmetic + − ∗ / // % ∗∗

relational < <= == != >= >

logical and or not

The meaning of + is overloaded. This means it has different meanings in differ-
ent contexts.

Try this code:

17 + 2
” straw ” + ” berry ”

What are two different meanings of +?

2

The logical operators can be defined with truth tables:

A B A or B
T T T
T F T
F T T
F F F

A B A and B
T T T
T F F
F T F
F F F

A not A
T F
F T

Python differs from some other popular languages by including an operator
(∗∗) for exponentiation. It also includes distinct operators (/ //) for integer
and floating point division. Other popular languages also distinguish between
integer and floating point divisions, but do so differently. Python’s logical oper-
ators are words. In some other languages, the logical operators are represented
by characters that are not letters.

Statements

With variables, literals (numbers, strings, False and True), and operators, we
can compose expressions.

(1 − t) ∗ a + t ∗ b

With a variable and an expression, we can compose an assignment statement.

we ighted average = (1 − t) ∗ a + t ∗ b

With relational and logical operators, we can compose an if statement.

i f 0 .0 < t and t < 1 . 0 :
we ighted average = (1 − t) ∗ a + t ∗ b

Python allows a more concise version of this condition. (Some other popular
programming languages do not allow this shortcut.)

3

i f 0 .0 < t < 1 . 0 :
we ighted average = (1 − t) ∗ a + t ∗ b

What if the weight for the weighted average does not have a sensible value?

i f 0 .0 < t < 1 . 0 :
we ighted average = (1 − t) ∗ a + t ∗ b

else :
print (”The value o f t must l i e between 0 .0 and 1 . 0 . ”)

What if we want evenly spaced values between two bounds?

pr in t 2 .0 , 2 .2 , 2 .4 , 2 .6 , and so on up to 3.8
a = 2
b = 4
for i in range (1 0) :

f r a c t i o n = i / 10
value = (1 − f r a c t i o n) ∗ a + f r a c t i o n ∗ b
print (va lue)

Statements give programmers the means to. . .

• compute, store, and retrieve values

• instruct the computer to execute a series of actions

• instruct the computer to choose between (or among) alternative actions

• instruct the computer to execute an action repeatedly

What we will learn next

Compound data types

We will learn to bundle related values. We can create variables with contain
several related values.

de f i n e a l i s t o f peop l e who have won the Turing Award
tur ing award winners = [’ Brooks ’ , ’ D i j k s t r a ’ , ’Knuth ’]
each element o f a l i s t has an index
print (tur ing award winners [0])
print (tur ing award winners [1])
print (tur ing award winners [2])

a programmer can change the va lue o f an element
of a l i s t
tur ing award winners [0] = ” Freder i ck P. Brooks , Jr . ”

4

print (tur ing award winners [0])

de f i n e a t u p l e t ha t con ta ins a f i r s t name and l a s t name
c o m p u t e r s c i e n t i s t = (’ Donald ’ , ’Knuth ’)
each element o f t u p l e has an index
print (” f i r s t name = ” , c o m p u t e r s c i e n t i s t [0])
print (” l a s t name = ” , c o m p u t e r s c i e n t i s t [1])

tup l e s are immutable−−− i t i s not p o s s i b l e to change
the va lue o f an element

de f i n e a d i c t i ona r y
p r o f e s s o r = { ’name ’ : ’ Donald Knuth ’ ,

’ i n s t i t u t i o n ’ : ’ Stanford Un ive r s i ty ’ }
each element o f a d i c t i ona r y has a key and a va lue
here , use a key to p r i n t a va lue
print (p r o f e s s o r [”name”])
print (p r o f e s s o r [” i n s t i t u t i o n ”])

We will need to learn more about loops.

for i in range (len (tur ing award winners)) :
print (tur ing award winners [i])

for n in c o m p u t e r s c i e n t i s t :
print (n)

for k in p r o f e s s o r . keys () :
print (p r o f e s s o r [k])

for n in p r o f e s s o r . va lue s () :
print (n)

Functions

We can also bundle related statements. We will begin by bundling related
statements in functions.

def f a h r e n h e i t t o c e l s i u s (temperature) :
temperature = temperature − 32
temperature = temperature ∗ 5 / 9
return temperature

This gives us a means of writing more concisely. We define a function and then
can call (use) it many times:

5

f r e e z i n g p o i n t = f a h r e n h e i t t o c e l s i u s (32)
comfortab le temperature = f a h r e n h e i t t o c e l s i u s (68)
b o i l i n g p o i n t = f a h r e n h e i t t o c e l s i u s (212)

Use a five step recipe when writing a function:

• State the purpose of the function in a single, short, simple sentence:
“Given a temperature on the Fahrenheit scale, return the equivalent tem-
perature on the Celsius scale.”

• Give the function a name that clearly indicates its purpose: fahrenheit to celsius

• Specify the number and type of parameters: “the caller of the function
must provide a single floating point value that represents a temperature
on the Fahrenheit scale.”

• Specify the type of value that the function will return to its caller: “the
function returns a floating point value that represents a temperature on
the Celsius scale.”

• Compose a sequence of arithmetic and logical operations that computes
the function’s return value.

temperature = temperature − 32
temperature = temperature ∗ 5 / 9
return temperature

Resist the temptation to jump straight to the last step!

If you do not get the first four steps right before you start on the last step, you
will waste a lot of time.

If at the outset you do not know how to compute the desired result, you can
still accomplish much by writing a stub function:

def f a h r e n h e i t t o c e l s i u s (temperature) :
return 0 .0

This is syntactically correct Python. The interpreter will parse and execute this
code. Of course, the function will return 0.0 to its caller every time and so will
return a correct answer only when temperature = 32.

To write a stub function, complete the first four steps of the recipe for writing
functions, then write a statement that returns a fixed value (maybe 0 for a
function that returns an int value or False for a function that returns a bool
value). This value can be arbitrary. It is just a place holder.

Programmers write stub functions so that they can work on other parts of a
program until they find (for example, by reading online or by asking a teammate)
the algorithms that they need to complete those functions.

6

Exercises

Practice writing functions

Write a program that defines and tests functions that. . .

• compute the arithmetic mean of two numbers

• compute the geometric mean of two numbers

• compute the harmonic mean of two numbers

• computes the Euclidean distance between two points in the plane, each of
which is represented by a tuple

• computes the Manhattan distance between two points in the plane, each
of which is represented by a tuple

Use this template:

import math

wr i t e d e f i n i t i o n s o f f unc t i on s here

i f name == ’ ma in ’ :
wr i t e c a l l s to f unc t i on s here

Use your new knowledge of functions to draw a landscape

Write a program that defines functions that draw elements of a landscape. Use
the Turtle module. You might, for example, write functions that. . .

• draw a house

• draw a window or a door

• draw a brick wall

• draw a tree

• draw a car

7

