
Graded Exercise 2

CSC140 Foundations of Computer Science

28 February 2020

Today’s Graded Exercise has 12 questions.

1. Which of the following statements describes how software engineers test
software?

(a) They continue repeating a test after removing a defect that caused
the test to fail.

(b) They demonstrate that the program returns correct outputs with all
possible inputs.

(c) They prove the complete absence of defects.

(d) They verify that the program computes all numerical results with
perfect precision.

• (a) They continue repeating a test after removing a defect that caused
the test to fail.

2. You read about the life of John Aaron, Don Eyles, Margaret Hamilton, or
Katherine Johnson. Which one of these lessons might we draw from their
examples?

(a) Title and rank determine who exercises responsibility in any organi-
zation.

(b) Courage, initiative, curiosity, and effort count for more than a per-
son’s age or the kind of degree that a person possesses.

(c) Leadership in a technical field requires deep study of that same field
in a university.

1

(d) Years of work must precede significant achievement.

• (b) Courage, initiative, curiosity, and effort count for more than a
person’s age or the kind of degree that a person possesses.

3. Examine this code:

def f a c t o r i a l (n) :
i f n == 0 :

return 1
e l i f n == 1 :

return 1
else :

return n ∗ f a c t o r i a l (n − 1)

print (f a c t o r i a l (5))

(a) What will this code print?

(b) Which essential features of a recursive function do you see in this
function?

(c) What will happen if this function is called with an argument that is
a negative integer?

(a) The program will print “120.”

5! = 5 · 4 · 3 · 2 · 1
= 120

(b) The function calls itself (the name of the function appears within the
definition of the function) and it contains an if statement (there is
code that tells the computer when to stop calling the function).

2

(c) The function will continue to call itself forever if given a negative
argument because each successive call gives the function a still smaller
(more negative) argument—the argument will never equal 0 or 1 (the
stopping conditions).

In practice, the computer will stop executing the program when the
program has exhausted the amount of memory that the operating
system has allocated for managing function calls.

4. What does this code print?

def power (base , exponent) :
product = 1
for i in range (0 , exponent) :

product ∗= base
return product

print (power (2 , 0))
print (power (2 , 1))
print (power (2 , 2))
print (power (2 , 6))

The program will print:

1
2
4

64

This is because:

20 = 1

21 = 2

22 = 4

26 = 64

5. Why might we prefer this function over the previous one?

3

def power (base , exponent) :
i f exponent == 0 :

return 1
e l i f exponent == 1 :

return base
else :

smal l e r power = power recurse (base , exponent // 2)
i f exponent % 2 == 0 :

return smal l e r power ∗ smal l e r power
else :

return base ∗ smal l e r power ∗ smal l e r power

This is a recursive function—the function calls itself. The previous func-
tion was iterative—it used a loop to build a product.

In this case, recursion makes it possible to raise a number to a power
with fewer multiplications than were used in the iterative version of the
function.

In this case, the recursive version of the function is more efficient than is
the iterative version of the function—it gets the job done with less work.

6. What does this code print?

t r i a n g u l a r = [(n ∗ (n + 1))//2 for n in range (8)]

print (t r i a n g u l a r)

[0 , 1 , 3 , 6 , 10 , 15 , 21 , 28]

7. Write code that defines a function that computes Tn, the nth triangular
number.

Tn =
n · (n + 1)

2

4

def t r i a n g u l a r (n) :
return (n ∗ (n + 1)) // 2

8. What does this code print?

def f (va lue s) :
b e s t g u e s s s o f a r = va lues [0]

for i in range (1 , len (va lue s)) :
i f va lue s [i] > b e s t g u e s s s o f a r :

b e s t g u e s s s o f a r = va lues [i]

return b e s t g u e s s s o f a r

def g (va lue s) :
b e s t g u e s s s o f a r = 0

for i in range (1 , len (va lue s)) :
i f va lue s [i] > va lue s [b e s t g u e s s s o f a r] :

b e s t g u e s s s o f a r = i

return b e s t g u e s s s o f a r

data = [3 , 1 , 4 , 1 , 5 , 9 , 2]

print (f (data))
print (g (data))

The program prints:

9
5

This is because:

• The function f () returns the value of the largest number in a list.

• The function g() returns the index of the largest number in a list.

5

• In this case, the largest number is 9. It is the sixth number in the
list, and so has index 5.

9. There are searches within the selection and insertion sort algorithms.

(a) In which of the two sorting algorithms is the search through the
sorted part of the list?

(b) In which of the two sorting algorithms is the search through the
unsorted part of the list?

(c) In which of the two sorting algorithms is the search from left to right
(toward the last element of the list)?

(d) In which of the two sorting algorithms is the search from right to left
(toward the first element of the list)?

(e) In which of the two sorting algorithms does the search always reach
one end of the list (the first or last element)?

(f) In which of the two sorting algorithms does the search sometimes
stop before reaching one end of the list?

(a) The insertion sort searches through the sorted part of the list.

(b) The selection sort searches through the unsorted part of the list.

(c) The selection sort searches from left to right.

(d) The insertion sort searches from right to left.

(e) The search in the selection sort always goes all of the way to the last
element in the list.

(f) The search in the insertion sort does not always go all of the way to
the first element in the list.

10. Write the loop that is missing from this function.

def merge (a , b) :
a i s a so r t ed l i s t o f numbers
b i s a so r t ed l i s t o f numbers
#
return a so r t ed l i s t t h a t conta ins
a l l o f the numbers in a and b

6

i = 0
j = 0
r e s u l t = []

while i < len (a) and j < len (b) :
i f a [i] < b [j] :

r e s u l t . append (a [i])
i += 1

else :
r e s u l t . append (b [j])
j += 1

while i < len (a) :
r e s u l t . append (a [i])
i += 1

TO−DO add one more loop here

return r e s u l t

while j < len (b) :
r e s u l t . append (b [j])
j += 1

This loop is needed in case the first loop in the function reaches the end
of list a before it reaches the end of list b. In that case, this loop will add
the elements that remain in list b to list result.

11. What does this code print?

class Vector :
def i n i t (s e l f , x , y) :

s e l f . x = x
s e l f . y = y

def s t r (s e l f) :
return f ” ({ s e l f . x : 6 . 2 f } ,{ s e l f . y : 6 . 2 f }) ”

i f name == ” main ” :
u = Vector (2 , 3)
v = Vector (5 , 7)

7

print (”u = ” , u)
print (”v = ” , v)

The program prints:

(2 , 3)
(5 , 7)

12. The sum of two vectors is another vector. The rule for adding 2 vectors is
simple—the x component of the sum is just the sum of the x components
of the two vectors, and the y component of the sum is the sum of the y
components of the two vectors.

Here is an example:

~u = (2, 3)

~v = (5, 7)

~u + ~v = (2 + 5, 3 + 7)

= (7, 10)

(a) Add to the Vector class a method that adds one vector to another.

(b) Add to the Vector class program that tests the new method.

class Vector :
def i n i t (s e l f , x , y) :

s e l f . x = x
s e l f . y = y

answer to par t (a)
def add (s e l f , o t h e r v e c t o r) :

sum x = s e l f . x + o t h e r v e c t o r . x
sum y = s e l f . y + o t h e r v e c t o r . y
return Vector (sum x , sum y)

8

def s t r (s e l f) :
return f ” ({ s e l f . x : 6 . 2 f } ,{ s e l f . y : 6 . 2 f }) ”

i f name == ” main ” :
u = Vector (2 , 3)
v = Vector (5 , 7)

print (”u = ” , u)
print (”v = ” , v)

answer to par t (b)
sum = u . add (v)
print (”sum = ” , sum)

This next exercise is not part of today’s examination.

1. Write a program that draws the T-Square fractal, the Sierpinski Gasket,
or the Sierpinski Carpet. Look on the Internet for the information that
you need.

Work in a team. Walk around the laboratory. See what other teams are
doing.

Make good use of the time that is available to us. Get as much work done
today as you can.

2. Read “Robert Noyce and His Congregation” and “No Silver Bullet: Essence
and Accidents of Software Engineering.” (You will find links to these ar-
ticles on Moodle.)

Take enough notes so that you can contribute to a discussion on Monday.

9

