
Graded Exercise 3

CSC140 Foundations of Computer Science

04 March 2020

Questions and answers

1. In two or three sentences, describe a lesson that you drew from your
reading of Tom Wolfe’s Robert Noyce and His Congregation.

Robert Noyce is one of many pioneers of electrical and software engineering
whose origins were in the midwestern and western parts of the United
States. The culture of small towns, coming in part out of the churches
that served those towns, cultivated independence, embrace of hard work, a
practical bent, esteem for engineering, and a disregard for rigid formality
and hierarchies. Noyce took those attitudes and habits with him to Silicon
Valley, where he recreated some of the culture of a small town in Iowa in
one of the world’s most successful technology companies.

2. In two or three sentences, describe a lesson that you drew from your read-
ing of Fred Brooks’ No Silver Bullet: Essences and Accidents of Software
Engineering.

Brooks predicts slow and incremental progress in software engineering.
He argues that some aspects of creating software are unavoidably difficult
and so rapid, revolutionary improvements are unlikely. We can improve
our own software engineering skills more by learning how to divide a big
problem into smaller problems, how to represent data, and how to reason

1

about the transformations of data than we can by concentrating on, for
example, the rules of programming languages.

The next questions refer to the program that follows the questions.

3. What does this program accomplish in lines 49–51?

This part of the program creates two instances of the Time class and then
computes and prints the sum of the two times.

4. What does this program accomplish in lines 55–62?

This part of the program creates instances of the Time class. Each instance
contains a random number of hours and minutes. The code puts each
instance in a list named appointments.

5. Write code that will create two instances of the Time class and assign the
sum of the two Times to a third variable.

2

1 a = Time(1 , 50)
2 b = Time(1 , 20)
3 c = a . add (b)

6. Write code that will print all elements of a list that contains instances of
the Time class.

1 for t in appointments :
2 print (t)

7. The selection sort () function calls two other functions that the program-
mer has defined in this program. What are the names of these two func-
tions?

The selection sort () function calls pos min() and swap() functions.

8. Execution of the statement on line 49 will cause the execution of the
constructor of the Time class. On which lines does the program define
that constructor?

The definition of the class’ constructor is on lines 7–9.

9. Execution of the statement on line 65 will cause the execution of which
method in the Time class?

3

It will cause the execution of the str () method.

10. The grammar of the Python programming language, unlike the gram-
mars of many other programming languages, does not give programmers
a means of creating a variable whose value cannot be changed. However,
Python programmers commonly use a naming convention to indicate that
they wish to use a variable as a constant.

This program defines two constants. What are their names?

1 COUNT
2

3 MINUTES IN AN HOUR

11. Show or explain how you could change the program so that it prints a
Time as, for example, “1:20” instead of as “1 hour, 20 minutes.”

1 def s t r (s e l f) :
2 return f ”{ s e l f . hours : 2 d } :{ s e l f . minutes : 2 d}”

12. The program repeats the arithmetic in line 18 in lines 20 and 21. When
experienced programmers see that they are repeating themselves, they
write a function.

Show or explain how you could define another method in the Time class.
This new method will have no parameter other than self . It will return
to its caller an integer. This integer will be the total number of minutes
in the Time object.

For example:

1 meeting = Time(2 , 45)
2

3 # t h i s next s ta tement p r i n t s 165
4 # (because 2 hours and 45 minutes i s
5 # 2 hours ∗ 60 minutes /hour + 45 minutes = 165 minutes)
6 print (meeting . t o t a l m in u t e s ())

4

1 def t o t a l m inu t e s (s e l f) :
2 return s e l f . hours ∗ MINUTES IN AN HOUR + s e l f . minutes

Code: Defining a class and sorting a list.

1 import random
2

3 COUNT = 12
4 MINUTES IN AN HOUR = 60
5

6 class Time :
7 def i n i t (s e l f , hours , minutes) :
8 s e l f . hours = hours + minutes // MINUTES IN AN HOUR
9 s e l f . minutes = minutes % MINUTES IN AN HOUR

10

11 def add (s e l f , o the r t ime) :
12 hrs = s e l f . hours + other t ime . hours
13 min = s e l f . minutes + other t ime . minutes
14

15 return Time(hrs , min)
16

17 def compare to (s e l f , o the r t ime) :
18 my minutes = s e l f . hours ∗ MINUTES IN AN HOUR + s e l f . minutes
19

20 other minutes = other t ime . hours ∗ MINUTES IN AN HOUR
21 other minutes += other t ime . minutes
22

23 i f my minutes < other minutes :
24 return −1
25 e l i f my minutes == other minutes :
26 return 0
27 else :
28 return +1
29

30 def s t r (s e l f) :
31 return f ”{ s e l f . hours : 2 d} hours , { s e l f . minutes : 2 d} minutes ”
32

5

33 def swap (appointments , i , j) :
34 appointments [i] , appointments [j] = appointments [j] , appointments [i]
35

36 def pos min (appointments , s t a r t i n d e x) :
37 b e s t g u e s s s o f a r = s t a r t i n d e x
38 for i in range (s t a r t i n d e x + 1 , len (appointments)) :
39 i f appointments [i] . compare to (appointments [b e s t g u e s s s o f a r]) < 0 :
40 b e s t g u e s s s o f a r = i
41 return b e s t g u e s s s o f a r
42

43 def s e l e c t i o n s o r t (appointments) :
44 for i in range (len (appointments)) :
45 j = pos min (appointments , i)
46 swap (appointments , i , j)
47

48 i f name == ” main ” :
49 a = Time(1 , 50)
50 b = Time(1 , 20)
51 print (f ”{a} + {b} = {a . add (b)} ”)
52 print (”a compared to b?” , a . compare to (b))
53 print (”b compared to a?” , b . compare to (a))
54

55 appointments = []
56 for i in range (COUNT) :
57 hrs = random . randint (0 , 23)
58 min = random . randint (0 , 59)
59

60 t = Time(hrs , min)
61

62 appointments . append (t)
63

64 for t in appointments :
65 print (t)
66 print (”\n”)
67

68 swap (appointments , 2 , 4)
69

70 for t in appointments :
71 print (t)
72 print (”\n”)
73

74 s e l e c t i o n s o r t (appointments)
75

76 for t in appointments :
77 print (t)
78 print (”\n”)

6

79

80 print (” He l lo ”)

7

