
Notes

CSC230 Database Technologies for Analytics

21 October 2021

• let’s design and build more complicated databases!

– we need some design rules

– let’s retain power, simplicity of relational model

– let’s not add opportunities for errors to creep into our database

– avoid redundancy

– divide data among multiple tables

– link data in several tables with shared keys

• one value in each cell of our tables

• do not make the programmers who will use your database write long and
complicated queries!

• specifically, do not make it necessary for programmers to parse the con-
tents of cells

• parsing means, for example, retrieving an address from a single cell and
then splitting that single string into a part that contains the city, a part
that contains the state, and a part that contains the zip code

• designer of a database must think about how clients will use the database

– what kind of information will be important to clients?

– what kinds of questions will clients ask?

– will there be different kinds of clients?

– are clients known? could the number and kinds of clients change in
the future?

• our databases are relational

– what is the relationship among elements of a record?

– does each table have a well-defined purpose?

1



– is there a word (or a few words) that say what kind of thing each
row in the table describes?

• the first letter in ACID stands for “Atomic”

– atomic means indivisible

– the meaning of indivisible depends upon context

– “New Jersey” is atomic in a program that records the state in which
people live

– ’sweet potato’ is atomic in a database that records the kinds of veg-
etables in the produce section of a supermarket

– ’green tea’ might not be atomic in a coffee shop’s database—the shop
sells several kinds of tea, several kinds of coffee, and so on—some
clients will ask “What are all the kinds of tea that you have?”

• non-atomic data may also mean mixing types of data—e.g., a number and
a string in the same cell

– mixing types makes it harder for the software to catch errors in data
entry

– if cell contains city, state, and zip code (and type of column is VAR-
CHAR), then software cannot easily confirm that zipcode is all digits

• 2 rules for atomicity

– only one item in each of table’s cells

– only one column with each kind of data

∗ you can have several columns that each hold VARCHAR(40)

∗ you cannot have several columns that each hold names of stu-
dents enrolled in the class

• 2 rules for First Normal Form (1NF)

– data is atomic

– each record contains a primary key

• primary keys in a table

– unique

– non-null

– concise (and nothing superfluous—just enough information to uniquely
identify a record)

– immutable (cannot be changed)

– assigned at the time of a record’s creation

• database of movies

2



– a column for the screenwriters

– some screenplays have multiple authors

– crowding several authors in a single cell. . .

∗ makes queries and updates more complicated

∗ forces more work on queries and updates even in the case of
cells that contain only a single screenwriter—programmer cannot
know which cells might contain more than one screenwriter

– table name, column name, and key value should specify a datum

• database of lectures

– 3 lectures in same hall

– repeated info (e.g., address of hall)

– hazard with updates—did we update all instances?

– extra cost of delete—remove event, and lose info about hall

– 2NF—1NF plus key that determines all other columnvalues

– (all columns functionall dependent on whole key)

– what if ticket price depends on duration of talk? (end time - start time)

– add table for ticket prices to get 3NF

– 3NF—all keys directly dependent on key

– 3NF is as far as we’ll go!

3


