Review

CSC316 Machine Learning Professor Leon Tabak

21 February 2022

This work is licensed under CC BY 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

1. We can multiply two matrices A and B if the number of columns in A matches the number of rows in B.

The product AB will be a matrix with the same number of rows as A and the same number of columns as B.

The number of rows in any matrix M^T is the same as the number of columns in M.

What is the shape of M^TM ?

- 2. The Normal Equation is a direct way of producing a linear regression. It calls for the computation of the inverse of a matrix. However, the fit() method of sklearn's LinearRegression does not compute an inverse. What does it do instead?
- 3. If A, B, and C are all matrices and AB = C, then how are the i^{th} row of A and the j^{th} column of B related to the element in the i^{th} and j^{th} column of C?
- 4. Here is the logistic function:

$$f(x) = \frac{1}{1 + e^{-x}}$$

- (a) Is the value of f(1000) very close to 1.0, very close to 0.0, or equal to 0.5?
- (b) Is the value of f(-1000) very close to 1.0, very close to 0.0, or equal to 0.5?
- (c) Is the value of f(0) very close to 1.0, very close to 0.0, or equal to 0.5?
- 5. How does logistic regression differ from linear regression?
 - Think of when it might be appropriate to use each kind of model.
 - Think of how we compute a value using each kind of model.
 - Think of what kind of output each model produces. Or, put another way, how will we interpret the output in each case?
- 6. Some authors use the words "logistic function" and "sigmoid function" to mean the same thing. For others, a sigmoid function is a class of functions and the logistic function is just one example of a sigmoid function.

(See, for example, articles on MathWorld and Wikipedia.)

Another sigmoid function is the hyperbolic tangent:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- (a) What value does tanh(x) approach if $x \gg 0.0$?
- (b) What value does tanh(x) approach if $x \ll 0.0$?
- (c) What is the value of tanh(0)?
- 7. What do characteristics do the logistic function and the hyperbolic tangent have in common?
- 8. Our definition of entropy comes from Claude Shannon. Take a few minutes to read online about the life and work of Claude Shannon. What were his most important contributions to science, mathematics, or engineering?
- 9. To understand the definition of entropy, we need to know something about logarithms. Let's refresh our memories.
 - (a) What is the value of $\log_{10}(1000)$?
 - (b) What is the value of $\log_2(1024)$
 - (c) Does it seem reasonable that $\log_{10}(1024)$ will be close to 3?

- (d) Does it seem reasonable that $\log_{10}(2)$ will be close to 1/3? The logarithm base 10 of 2 is the power to which we must raise 10 to get 2.
 - Raising a number to the power 1/3 means computing its cube root. Can you see that, since $2^3 = 8$ and 8 is close to 10, the cube root of 10 is probably a little more than 1/3?
- (e) If...

$$\log_{10}(1024) \approx 3$$
$$\log_{10}(2) \approx \frac{1}{3}$$

What must be the approximate value of the one value divided by the other?

$$\frac{\log_{10}(1024)}{\log_{10}(2)} \approx \frac{3}{\frac{1}{3}}$$
$$\approx ?$$

- (f) Try running this code in the Python IDLE shell:
- 1 import math
- 2
- 3 math.log10(1024) / math.log10(2)
- 10. Let...

$$x = \log_2(a)$$
$$y = \log_2(b)$$

This means...

$$2^{x} = a$$

$$2^{y} = b$$

$$2^{x} 2^{y} = a b = 2^{x+y}$$

$$\begin{aligned} \log_2(ab) &= x + y \\ &= \log_2(a) + \log_2(b) \end{aligned}$$

If we already know $\log_2(a)$ and $\log_2(b)$, how can we easily compute $\log_2(a/b)$?