
## Review

## CSC316 Machine Learning Professor Leon Tabak

## 02 March 2022

This work is licensed under CC BY 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



Not every student studied each of these topics in depth, but in our reading and in hearing our classmates' presentations we all learned something about these topics:

- We familiarized ourselves with a checklist for machine learning projects.
  - for what purpose will our client use our model?
  - can we build on work that we or others have already done?
  - what are the potential and limitations of our model?
- We used mathematical terms and symbols and our knowledge of the operations that they denote to describe our models.
  - derivative of a function of a single variable
  - $\frac{\partial f(x,y,z)}{\partial x}$  : partial derivative of a function of multiple variables
  - $\nabla f(x,y,z)$ : gradient of a function (key to stochastic gradient descent)
  - $-\vec{u} \cdot \vec{v}$  or  $\mathbf{v}^T \mathbf{u}$ : dot product of two vectors (we defined a linear model with the dot product of a parameter vector and a feature vector)

- product of two matrices (each element of the product is the dot product of a row in the first matrix and a column in the second matrix)
- $\mathbf{M}^T$ : transpose of a matrix
- M<sup>-1</sup>: inverse of a matrix (we did not learn how to construct an inverse, but learned the computational complexity and learned that Singular Value Decomposition gives us a means of constructing a pseudo-inverse)
- properties of the exponential function ( $e^{100}$  is a very large positive number,  $e^{-100}$  is a positive number very near 0.0)
- properties of the logarithm function (log 0 is undefined, log 0.0001 is a negative number with a very large magnitude, log 0.9999 is a negative number whose value is just a little less than 1.0,  $\log 1.0 = 0.0$ )
- logistic (sigmoid) function

$$f(x) = \frac{1}{1 + e^{-x}}$$

- softmax (normalized exponential) function
- other activation functions—ReLu, tanh
- We used statistics to evaluate our models. Our algorithms used statistical measure to generate successively better guesses.
  - precision, recall, F1, ROC curves
  - root mean square error (RMSE) (also called Euclidean norm,  $\ell_2$  norm)
  - also, mean square error and mean absolute error
  - logistic regression cost function (log loss)
  - correlation matrix (Pearson's r)
  - confusion matrix
  - Gini impurity measure and entropy (for those who chose to study decision trees)
  - inertia and silhouette score (for those who chose to study clustering)
- We saw some widely datasets that many students and teachers use in their study of machine learning.
  - California Housing Prices dataset
  - MNIST dataset (hand-drawn numerals)
  - MNIST fashion dataset
  - Iris dataset

- moons dataset
- We explored and prepared data. We used the Python programming language and the NumPy, Pandas, and Scikit-learn libraries. We used Matplotlib and Markdown in Jupyter notebooks to share our work.
  - divide dataset into training and test sets
  - examine first/last few instances
  - produce means, minima, maxima, standard deviation in columns
  - discard outliers
  - count nulls in rows and columns
  - drop rows/columns that contain a large number of nulls
  - replace nulls with mean, median, mode, or a constant value
  - scale data (mean = 0, stddev = 1.0 or min = 0.0, max = 1.0)
  - one hot encoding of categorical variables
  - engineer features (combining or dividing variables)
  - reduce the number of dimensions (although it was not part of the assigned reading, we identified PCA—Principal Component Analysis—as a means of reducing dimensions)
- We saw the tradeoff between bias and variance. We learned how to improve a model when we see evidence of underfitting and overfitting (for example, by regularization).
- We learned how to use cross-validation to develop our models. We learned how to search for optimal values for our hyperparameters by random assignments and by systematic search in a grid.
- We experimented with prediction, classification, and clustering.
  - linear regression
  - logistic regression
  - decision trees, random forests, support vector machines, k-means
  - neural networks (with Keras and TensorFlow)
    - \* specify number of layers
    - \* specify number of neurons in each layer
    - \* select activation functions
    - \* decide how layers will be connected
- We saw a variety of interesting applications of machine learning—in games, aviation, medical care, natural language processing, and the filtering of recordings of music and voices.
- We took just a little peek at some of the challenges in machine learning, looking, for example, at the amount of energy required to train some models.