Quiz

CSC222 Geographic Information System

11 November 2014

- 1. The Cohen Sutherland algorithm categorizes line segments with respect to a rectangular drawing window. It recognizes three categories:
 - line segments that it can immediately see are wholly within the window
 - line segments that it can immediately see are wholly outside of the window
 - line segments that might or might not intersect the window—additional calculation is needed

It does this by first labeling each endpoint of a line segment with four binary digits.

- The first digit is 1 if the endpoint is to the left of the window and 0 if it is not to the left.
- The second digit is 1 if the endpoint is to the right of the window and 0 if it is not to the right.
- The third digit is 1 if the endpoint is below the window and 0 if it is not below.
- The fourth digit is 1 if the endpoint is above the window and 0 if it is not above.

Label the endpoints of the line segments in figure 1.

- 2. After labeling a line segment's endpoints, the Cohen Sutherland algorithm computes the bitwise-or and the bitwise-and of the two four bit numbers.
 - The or of two bits is 1 except in the case that both bits are 0.
 - The and of two bits is 0 except in the case that both bits are 1.
 - Compute the results for the line segments in figure 1.
- 3. In figure 2 and figure 3 you see two different representations of the same graph.
 - Find a graph in a book or on the Web. Shat you, given a diagrammatic representation of a graph, you can construct its adjacency matrix. Show that, given an adjacency matrix, you can draw the corresponding graph.

Figure 1: Cohen Sutherland algorithm.

- 4. In figure 4 you see the steps in the construction of a minimum spanning tree for the same graph. In figure 5 you see the result.
 - Find a graph in a book or on the Web. Construct and draw a minimum spanning tree for your graph. Show your work in the same way that I have shown mine.
- 5. In figure 6 you see the steps for the computation of shortest paths in the same graph. In figure 7 you see the result.
 - Find a graph in a book or on the Web. Compute distances from one node to all other nodes in your graph. Show your work in the same way that I have shown mine.

	\mathbf{A}	\mathbf{B}	\mathbf{C}	D	${f E}$
$\overline{\mathbf{A}}$	_	9	8	_	_
\mathbf{B}	9	_	5	_	1
В С	8	5	_	4	3
D	_	_	4	_	7
${f E}$	_	1	3	7	_

Figure 2: Adjacency matrix.

Figure 3: Graph.

Nodes in tree	Edge	Length	Add edge to tree?
Ø	BE	1	YES
$_{\mathrm{B,E}}$	CE	3	YES
$_{\mathrm{B,C,E}}$	CD	4	YES
$_{\mathrm{B,C,D,E}}$	BC	5	NO
$_{\mathrm{B,C,D,E}}$	DE	7	NO
$_{\mathrm{B,C,D,E}}$	AC	8	YES
A,B,C,D,E	AB	9	NO

 $Figure \ 4: \ Minimum \ spanning \ tree.$

Figure 5: Minimum spanning tree.

\mathbf{V}	\mathbf{A}	\mathbf{B}	\mathbf{C}	D	${f E}$
Ø	0:∅	∞	∞	∞	∞
A	0:0	9:A	8 :A	∞	∞
AC		9 :A		12:C	11:C
ABC				12:C	10 :B
ABCE				12:C	
ABCDE					

Figure 6: Shortest path.

Figure 7: Shortest paths: distances from A to all other nodes.