## Quiz

## CSC222 Geographic Information System

11 November 2014

1. The Cohen Sutherland algorithm categorizes line segments with respect to a rectangular drawing window. It recognizes three categories:

- line segments that it can immediately see are wholly within the window
- line segments that it can immediately see are wholly outside of the window
- line segments that might or might not intersect the window-additional calculation is needed

It does this by first labeling each endpoint of a line segment with four binary digits.

- The first digit is 1 if the endpoint is to the left of the window and 0 if it is not to the left.
- The second digit is 1 if the endpoint is to the right of the window and 0 if it is not to the right.
- The third digit is 1 if the endpoint is below the window and 0 if it is not below.
- The fourth digit is 1 if the endpoint is above the window and 0 if it is not above.

Label the endpoints of the line segments in figure 1.
2. After labeling a line segment's endpoints, the Cohen Sutherland algorithm computes the bitwise-or and the bitwise-and of the two four bit numbers.
The or of two bits is 1 except in the case that both bits are 0 .
The and of two bits is 0 except in the case that both bits are 1 .
Compute the results for the line segments in figure 1.
3. In figure 2 and figure 3 you see two different representations of the same graph.
Find a graph in a book or on the Web. Shat you, given a diagrammatic representation of a graph, you can construct its adjacency matrix. Show that, given an adjacency matrix, you can draw the corresponding graph.


Figure 1: Cohen Sutherland algorithm.
4. In figure 4 you see the steps in the construction of a minimum spanning tree for the same graph. In figure 5 you see the result.

Find a graph in a book or on the Web. Construct and draw a minimum spanning tree for your graph. Show your work in the same way that I have shown mine.
5. In figure 6 you see the steps for the computation of shortest paths in the same graph. In figure 7 you see the result.
Find a graph in a book or on the Web. Compute distances from one node to all other nodes in your graph. Show your work in the same way that I have shown mine.

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | - | 9 | 8 | - | - |
| $\mathbf{B}$ | 9 | - | 5 | - | 1 |
| $\mathbf{C}$ | 8 | 5 | - | 4 | 3 |
| $\mathbf{D}$ | - | - | 4 | - | 7 |
| $\mathbf{E}$ | - | 1 | 3 | 7 | - |

Figure 2: Adjacency matrix.


Figure 3: Graph.

| Nodes in tree | Edge | Length | Add edge to tree? |
| :--- | ---: | ---: | ---: |
| $\emptyset$ | BE | 1 | YES |
| B,E | CE | 3 | YES |
| B,C,E | CD | 4 | YES |
| B,C,D,E | BC | 5 | NO |
| B,C,D,E | DE | 7 | NO |
| B,C,D,E | AC | 8 | YES |
| A,B,C,D,E | AB | 9 | NO |

Figure 4: Minimum spanning tree.


Figure 5: Minimum spanning tree.

| $\mathbf{V}$ | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\emptyset$ | $\mathbf{0}: \emptyset$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| A | $0: \emptyset$ | $9: \mathrm{A}$ | $\mathbf{8}: \mathrm{A}$ | $\infty$ | $\infty$ |
| AC |  | $\mathbf{9}: \mathrm{A}$ |  | $12: \mathrm{C}$ | $11: \mathrm{C}$ |
| ABC |  |  |  | $12: \mathrm{C}$ | $\mathbf{1 0}: \mathrm{B}$ |
| ABCE |  |  |  | $\mathbf{1 2 : C}$ |  |
| ABCDE |  |  |  |  |  |

Figure 6: Shortest path.


Figure 7: Shortest paths: distances from A to all other nodes.

