Sources of Error (and other topics)

CSC Geographic Information Systems

13 November 2014

- sources of error
- projections
* earth is round, map is flat
* distortion of shapes, angles, distances, and/or areas
- imperfect datums / approximations of earth's shape
* earth is not a sphere
* earth is not even an ellipsoid!
- sampling and interpolation
* cannot measure everywhere!
* must estimate at values of points between measured points
- measurement errors
* finite resolution of instruments
- human error
* transcription
* miscalibrated instruments
* lost data
- finite precision of arithmetic on computers
- Interpolation and extrapolation
interpolation values between measured points (do this more confidently)
extrapolation values beyond range of measured points (less confidence when we do this)
- method of least squares
- a way of identifying relationships among variables
- could be used to help explain and predict phenomena
- let's say each of many measurement has two components-e.g., we could measure the moisture in each square meter of a farmer's field and measure the amount of wheat harvested from each square meter
- can plot data on $x-y$ graph
- suspect a linear relationship between variables-e.g,, yield $=m *$ moisture $+b$
- want to find m (slope - steepness of line) and b (intercept-height of the point at which the line intersects the y axis) that gives line that is "closest" to all data points
- closest means sum of squared errors is least
$-\operatorname{minimize} \sum_{0}^{N}\left(y_{i}-\left(m \cdot x_{i}+b\right)\right)^{2}$
- best fit
- could derive formula using our knowledge of calculus or use built-in functions in spreadsheet or statistical software
- statistical reasoning is important in work with GIS
- Different definitions of distance
- Euclidean
* "as the crow flies"
* computed like length of hypoteneuse of right triangle
* distance $=\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}}$
- Manhattan
* like directions you would give to someone in a big city
* "east 3 blocks, then north 6 blocks"
* distance $=\left|x_{1}-x_{0}\right|+\left|y_{1}-y_{0}\right|$
- common features of all distance functions
* $\operatorname{distance}(a, a)=0$
* $\operatorname{distance}(a, b)=\operatorname{distance}(b, a)$
* $\operatorname{distance}(a, c) \leq \operatorname{distance}(a, b)+\operatorname{distance}(b, c)$
- other functions can also be generalized (e.g., average - there are arithmetic, geometric, and harmonic means)

