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Line Drawing 

 Draw a line on a raster screen between two points 

 Why is this a difficult problem? 

 What is “drawing” on a raster display? 

 What is a “line” in raster world? 

 Efficiency and appearance are both important 

Problem Statement 

 Given two points P and Q in XY plane, both with integer coordinates, 
determine which pixels on raster screen should be on in order to draw a 
unit-width line segment starting at P and ending at Q 

 

Scan Converting Lines 
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 Final step of rasterisation (process of taking geometric shapes and 
converting them into an array of pixels stored in the framebuffer to be 
displayed) 

 Takes place after clipping occurs 

 All graphics packages do this at the end of the rendering pipeline 

 Takes triangles and maps them to pixels on the screen 

 Also takes into account other properties like lighting and shading, but 
we’ll focus first on algorithms for line scan conversion 

What is Scan Conversion? 
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Special cases: 
 Horizontal Line: 

 Draw pixel P and increment x coordinate value by 1 to get next pixel. 

 Vertical Line: 

 Draw pixel P and increment y coordinate value by 1 to get next pixel. 

 Diagonal Line: 

 Draw pixel P and increment both x and y coordinate by 1 to get next pixel. 

 What should we do in general case? 

 Increment x coordinate by 1 and choose point closest to line. 

 But how do we measure “closest”? 

 

Finding the next pixel: 
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 Why can we use vertical distance as 
a measure of which point is closer? 

 … because vertical distance is 
proportional to actual distance 

 Similar triangles show that true 
distances to line (in blue) are 
directly proportional to vertical 
distances to line (in black) for each 
point 

 Therefore, point with smaller 
vertical distance to line is closest to 
line 

Vertical Distance 

(𝑥1, 𝑦1) 

(𝑥2, 𝑦2) 
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Basic Algorithm: 
 Find equation of line that connects two points P and Q 

 Starting with leftmost point , increment 𝑥𝑖  by 1 to calculate 𝑦𝑖  = 𝑚 ∗ 𝑥𝑖 + B where 
𝑚 = slope, B = y intercept 

 Draw pixel at (𝑥𝑖, Round(𝑦𝑖)) where  Round (𝑦𝑖) = .5 + 𝑦𝑖  

Incremental Algorithm: 

 Each iteration requires a floating-point multiplication   
 Modify algorithm to use deltas 

 (𝑦𝑖+1 − 𝑦𝑖) = 𝑚 ∗ (𝑥𝑖+1 − 𝑥𝑖) 

 𝑦𝑖+1 = 𝑦𝑖 + 𝑚 ∗ (𝑥𝑖+1 − 𝑥𝑖) 

 If  𝑥 = 𝑥𝑖+1 − 𝑥𝑖 = 1, then 𝑦𝑖+1 = 𝑦𝑖 + 𝑚 

 At each step, we make incremental calculations based on preceding step to 
find next y value 

 

 

 

Strategy 1 – Incremental Algorithm (1/3) 
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Strategy 1 – Incremental Algorithm (2/3) 
 

 

(𝑥𝑖 + 1, 𝑅𝑜𝑢𝑛𝑑 𝑦𝑖 + 𝑚 ) 

(𝑥𝑖 , 𝑦𝑖) 

(𝑥𝑖 , 𝑅𝑜𝑢𝑛𝑑 𝑦𝑖 ) 

(𝑥𝑖 + 1, 𝑦𝑖 + 𝑚) 

7  



Sample Code and Problems (3/3) 

void Line(int x0, int y0, int x1, int y1) { 

    int   x, y; 

    float dy = y1 – y0; 

    float dx = x1 – x0; 

    float m  = dy / dx; 

 

    y = y0; 

    for (x = x0; x < x1; ++x) { 

 WritePixel( x, Round(y) ); 

 y = y + m; 

   } 

} 

Rounding takes time 

Since slope is fractional, need special 
case for vertical lines (dx = 0) 
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 Assume that line’s slope is shallow and positive (0 < slope < 1);  
other slopes can be handled by suitable reflections about 
principle axes 

 Call lower left endpoint (𝑥0, 𝑦0) and upper right endpoint (𝑥1, 𝑦1) 

 Assume that we have just selected pixel 𝑃 at (𝑥𝑃 , 𝑦𝑃) 

 Next, we must choose between pixel to right (E pixel), or one 
right and one up (NE pixel) 

 Let Q be intersection point of line being scan-converted and 
vertical line 𝑥 = 𝑥𝑃 +1 

Strategy 2 – Midpoint Line Algorithm (1/3) 
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Strategy 2 – Midpoint Line Algorithm (2/3) 

Previous pixel 

E pixel 

NE pixel 

Midpoint M 
Q 

𝑃 = (𝑥𝑃, 𝑦𝑃) 

𝑥 = 𝑥𝑃 + 1 (dashed) 
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 Line passes between E and NE 

 Point that is closer to intersection 
point 𝑄 must be chosen 

 Observe on which side of line 
midpoint 𝑀 lies: 
 E is closer to line if midpoint 𝑀 lies 

above line, i.e., line crosses bottom 
half 

 NE is closer to line if midpoint 𝑀 lies 
below line, i.e., line crosses top half 

 Error (vertical distance between 
chosen pixel and actual line) is 
always ≤ .5 

 

Strategy 2- Midpoint Line Algorithm (3/3) 

For line shown, algorithm chooses 
NE as next pixel. 

Now, need to find a way to calculate 
on which side of line midpoint lies 

E pixel 

NE pixel 

𝑀 

𝑄 
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 Line equation as function: 𝑓 𝑥 = 𝑦 = 𝑚𝑥 + 𝐵 =
𝑑𝑦

𝑑𝑥
𝑥 + 𝐵 

 Line equation as implicit function: 𝑓 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 
 Avoids infinite slopes, provides symmetry between x and y 

 So from above,  
𝑦 ∙ 𝑑𝑥 = 𝑑𝑦 ∙ 𝑥 + 𝐵 ∙ 𝑑𝑥 

𝑑𝑦 ∙ 𝑥 − 𝑦 ∙ 𝑑𝑥 + 𝐵 ∙ 𝑑𝑥 = 0 
∴ 𝑎 = 𝑑𝑦, 𝑏 = −𝑑𝑥, 𝑐 = 𝐵 ∙ 𝑑𝑥 

 Properties (proof by case analysis): 
 𝑓 𝑥𝑚, 𝑦𝑚 = 0 when any point 𝑚 is on line 
 𝑓 𝑥𝑚, 𝑦𝑚 < 0 when any point 𝑚 is above line 

 𝑓 𝑥𝑚, 𝑦𝑚 > 0 when any point 𝑚 is below line 

 Our decision will be based on value of function at midpoint 𝑀 at (𝑥𝑃 + 1, 𝑦𝑃 + .5) 

 
 
 

 

General Line Equation 
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Decision Variable 𝑑 : 

 We only need sign of f(𝑥𝑃 + 1, 𝑦𝑃 + .5) to see where the line lies, and then 
pick nearest pixel. 

 𝑑 = f(𝑥𝑃 + 1, 𝑦𝑃 + .5)  

 if 𝑑 > 0 choose pixel NE 

 if 𝑑 < 0 choose pixel E 

 if 𝑑 = 0 choose either one consistently 

How do we incrementally update 𝑑? 

 On basis of picking E or NE, figure out location of 𝑀 for the next pixel, and 
corresponding value 𝑑 for next grid line. 

 We can derive 𝑑 for the next pixel based on our current decision. 

 

 

Decision Variable 
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Increment M by one in x direction: 

 𝑑𝑜𝑙𝑑   = 𝑎 𝑥𝑃 + 1 + 𝑏 𝑦𝑃 + .5 + 𝑐 

 𝑑𝑛𝑒𝑤 = 𝑓(𝑥𝑃 + 2, 𝑦𝑃 + .5) 

            = 𝑎 𝑥𝑃 + 2 + 𝑏 𝑦𝑃 + .5 + 𝑐 

 𝑑𝑛𝑒𝑤 − 𝑑𝑜𝑙𝑑  is the incremental difference E 
 𝑑𝑛𝑒𝑤 =  𝑑𝑜𝑙𝑑 + 𝑎 → E = 𝑎 = 𝑑𝑦 (2 slides back) 

 We can compute value of decision variable at next step incrementally 
without computing F(M) directly 
 𝑑𝑛𝑒𝑤 =  𝑑𝑜𝑙𝑑 + E = 𝑑𝑜𝑙𝑑 + 𝑑𝑦 

 E can be thought of as correction or update factor to take 𝑑𝑜𝑙𝑑 to 𝑑𝑛𝑒𝑤 

 It is referred to as forward difference 

 

Incrementing Decision Variable if E was chosen: 

14  



Increment M by one in both x and y directions: 

 𝑑𝑛𝑒𝑤 = 𝑓 𝑥𝑃 + 2, 𝑦𝑃 + 1.5  

                = 𝑎 𝑥𝑃 + 2 + 𝑏 𝑦𝑃 + 1.5 + 𝑐 

 NE = 𝑑𝑛𝑒𝑤 − 𝑑𝑜𝑙𝑑  

 𝑑𝑛𝑒𝑤 =  𝑑𝑜𝑙𝑑 + 𝑎 + 𝑏 → NE = 𝑎 + 𝑏 = 𝑑𝑦 − 𝑑𝑥 

 Thus, incrementally, 

 𝑑𝑛𝑒𝑤 =  𝑑𝑜𝑙𝑑 + NE = 𝑑𝑜𝑙𝑑 + 𝑑𝑦 − 𝑑𝑥 

If NE was chosen: 
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 At each step, algorithm chooses between 2 pixels based on 
sign of decision variable calculated in previous iteration. 

 It then updates decision variable by adding either E or 
NE to old value depending on choice of pixel. Simple 
additions only! 

 First pixel is first endpoint (𝑥0, 𝑦0), so we can directly 
calculate initial value of d for choosing between E and NE. 

Summary (1/2) 
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 First midpoint for first 𝑑 =  𝑑𝑠𝑡𝑎𝑟𝑡  is at (𝑥0 + 1, 𝑦0 + .5) 

 f (𝑥0 + 1, 𝑦0 + .5)   

            = 𝑎 𝑥0 + 1 + 𝑏 𝑦0 + .5 + 𝑐 

            = 𝑎𝑥0 + 𝑏𝑦0 + 𝑎 +
𝑏

2
+ c 

            = f 𝑥0, 𝑦0 + 𝑎 +
𝑏

2
 

 But 𝑥0, 𝑦0  is point on line, so f 𝑥0, 𝑦0 = 0 

 Therefore, 𝑑𝑠𝑡𝑎𝑟𝑡 = 𝑎 +
𝑏

2
= 𝑑𝑦 −

𝑑𝑥

2
 

 use 𝑑𝑠𝑡𝑎𝑟𝑡to choose second pixel, etc. 

 To eliminate fraction in 𝑑𝑠𝑡𝑎𝑟𝑡:  
 redefine f by multiplying it by 2; 𝑓 𝑥, 𝑦 = 2 𝑎𝑥 + 𝑏𝑦 + 𝑐  

 This multiplies each constant and decision variable by 2, but does not change sign 

 Note:  this is identical to “Bresenham’s algorithm”, though derived by different means.   
That won’t be true for circle and ellipse scan conversion. 

 

Summary (2/2) 
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void MidpointLine(int x0, int y0, int x1, int y1) { 
    int dx = (x1 - x0), dy = (y1 - y0); 
    int d = 2 * dy - dx; 
    int incrE = 2 * dy; 
    int incrNE = 2 * (dy - dx); 
    int x = x0, y = y0; 
    WritePixel(x, y); 
 
    while (x < x1) { 
        if (d <= 0) d = d + incrE;    // East Case 
        else { d = d + incrNE; ++y; } // Northeast Case 
        ++x; 
        WritePixel(x, y); 
    }   
} 

Example Code 
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Version 1:  really bad 
For 𝑥 from −𝑅 𝑡𝑜 𝑅: 

 𝑦 = 𝑅2  − 𝑥2; 

 WritePixel(round(𝑥), round(𝑦)); 

 WritePixel(round(𝑥), round(−𝑦)); 

Version 2:  slightly less bad 
For 𝑥 from 0 to 360: 

 WritePixel(round(𝑅 cos (𝑥)), round(𝑅 sin (𝑥))); 

 

Scan Converting Circles 

(17, 0) 

(0, 17) 

(17, 0) 

(0, 17) 
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Version 3 — Use Symmetry 

R 

(x0 + a, y0 + b) 

(x-x0)
2 + (y-y0)

2 = R2 

(x0, y0) 

Symmetry: 

 If 𝑥0 + 𝑎, 𝑦0 + 𝑏  is on circle centered at 
𝑥0, 𝑦0 : 

 Then 𝑥0 ± 𝑎, 𝑦0 ± 𝑏  and 𝑥0 ± 𝑏, 𝑦0 ± 𝑎  
are also on the circle 

 Hence there is 8-way symmetry 

 Reduce the problem to finding the pixels 
for 1/8 of the circle. 
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 Scan top right 1/8 of circle of radius 𝑅 

 Circle starts at 𝑥0, 𝑦0 + 𝑅  

 Let’s use another incremental 
algorithm with decision variable 
evaluated at midpoint 

 

Using the Symmetry 

(x0, y0) 
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x = x0, y = y0 + R; WritePixel(x, y); 
 
for (x = x + 1; (x – x0) < (y – y0); x++) { 
 if (decision_var < 0) { 
  // move east 
  update decision variable 
 } else { 
  // move south east 
  update decision variable 
  y--; 
 } 
 
 WritePixel(x, y); 
} 
 

Note: can replace all occurrences of 𝑥0, 𝑦0with 0, shifting 
coordinates by −𝑥0, −𝑦0   

The incremental algorithm – a sketch 
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 Decision variable 

 negative if we move E, positive if we move SE (or vice versa). 

 Follow line strategy: Use implicit equation of circle 

 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 𝑅2 = 0 

 𝑓 𝑥, 𝑦  is zero on circle, negative inside, positive outside 

 If we are at pixel 𝑥, 𝑦  examine 𝑥 + 1, 𝑦  and 𝑥 + 1, 𝑦 − 1  

 Compute f at the midpoint. 

 

What we need for the Incremental Algorithm 
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 Evaluate 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 𝑅2 at the point: 

𝑥 + 1, 𝑦 −
1

2
 

 We are asking: “Is 𝑓 𝑀  = 

𝑓 𝑥 + 1, 𝑦 −
1

2
= (𝑥 + 1)2+(𝑦 −

1

2
)2−𝑅2 

 positive or negative?” (it is zero on circle) 

 

The Decision Variable 

 If negative, midpoint inside circle, choose E 
 vertical distance to the circle is less at  (𝑥 + 1, 𝑦) than at 

𝑥 + 1, 𝑦 − 1  

 If positive, opposite is true, choose SE 
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 Decision based on vertical distance 

 Ok for lines, since d and dvert are proportional 

 For circles, not true: 

 

𝑑 𝑥 + 1, 𝑦 , 𝐶𝑖𝑟𝑐 = 𝑥 + 1 2 + 𝑦2 − 𝑅 

𝑑 𝑥 + 1, 𝑦 − 1 , 𝐶𝑖𝑟𝑐 = 𝑥 + 1 2 + (𝑦 − 1)2− 𝑅 

 

 Which d is closer to zero? (i.e., which value below is closest to R?): 
 

𝑥 + 1 2 + 𝑦2 or 𝑥 + 1 2 + (𝑦 − 1)2 

 

 

The right decision variable? 
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 We could ask instead: “Is 𝑥 + 1 2 + 𝑦2 or 𝑥 + 1 2 + (𝑦 − 1)2 closer to 
𝑅2?” 

 The two values in equation above differ by:  

 𝑥 + 1 2 + 𝑦2 − 𝑥 + 1 2 + 𝑦 − 1 2 = 2𝑦 − 1 

Alternate Phrasing (1/3) 
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 The second value, which is always less,  is closer if its difference from R2 is less 
than: 

1

2
(2𝑦 − 1) 

 

 i.e., if       𝑅2 − 𝑥 + 1 2 + 𝑦 − 1 2 <
1

2
(2𝑦 − 1) 

 

 then      0 < 𝑦 −
1

2
+ 𝑥 + 1 2 + 𝑦 − 1 2 − R2 

                0 < 𝑥 + 1 2 + 𝑦2 − 2𝑦 + 1 + 𝑦 −
1

2
− 𝑅2 

                    0 < 𝑥 + 1 2 + 𝑦2 − 𝑦 +
1

2
− 𝑅2 

                    0 < 𝑥 + 1 2 + (𝑦 −
1

2
)2+

1

4
− 𝑅2 

 

 

Alternate Phrasing (2/3) 
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 The radial distance decision is whether 

𝑑1 = 𝑥 + 1 2 + 𝑦 −
1

2

2

+
1

4
− 𝑅2 

 is positive or negative. 

 The vertical distance decision is whether 

𝑑2 = 𝑥 + 1 2 + 𝑦 −
1

2

2
− 𝑅2  

 is positive or negative; 𝑑1and 𝑑2 are ¼ apart. 

 The integer 𝑑1 is positive only if 𝑑2 +  ¼ is  positive (except special case 
where 𝑑2 = 0: remember you’re using integers). 

 

 

 

Alternate Phrasing (3/3) 
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 How can we compute the value of 

   𝑓 𝑥, 𝑦 = 𝑥 + 1 2 + 𝑦 −
1

2

2
− 𝑅2 

   at successive points? (vertical distance approach) 

 Answer:  
 Note that 𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥, 𝑦   

                           = Δ𝐸 𝑥, 𝑦 = 2𝑥 + 3 

 and that 𝑓 𝑥 + 1, 𝑦 − 1 − 𝑓(𝑥, 𝑦) 

                         = Δ𝑆𝐸 𝑥, 𝑦 = 2𝑥 − 2𝑦 + 5   

 

Incremental Computation Revisited (1/2) 
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 If we move E, update d = f(M) by 
adding 2𝑥 +  3 

 If we move SE, update d by adding  
2𝑥 − 2𝑦 + 5 

 Forward differences of a 1st degree 
polynomial are constants and those 
of a 2nd degree polynomial are 1st 
degree polynomials  

 this “first order forward difference,” 
like a partial derivative, is one 
degree lower   

 

Incremental Computation (2/2) 
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 The function ΔE 𝑥, 𝑦 = 2𝑥 + 3 is linear, hence amenable to incremental 
computation: 

ΔE 𝑥 + 1, 𝑦 − ΔE 𝑥, 𝑦 = 2 
ΔE 𝑥 + 1, 𝑦 − 1 − ΔE 𝑥, 𝑦 = 2 

 

 Similarly 
ΔSE 𝑥 + 1, 𝑦 − ΔSE 𝑥, 𝑦 = 2 

ΔSE 𝑥 + 1, 𝑦 − 1 − ΔSE 𝑥, 𝑦 = 4 

 

Second Differences (1/2) 
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 For any step, can compute new ΔE 𝑥, 𝑦  from old ΔE 𝑥, 𝑦  by adding 
appropriate second constant increment – update delta terms as we move. This 
is also true of ΔSE 𝑥, 𝑦 . 

 Having drawn pixel 𝑎, 𝑏 , decide location of new pixel at 𝑎 + 1, 𝑏  or 

(𝑎 +  1, 𝑏 –  1), using previously computed Δ(𝑎, 𝑏) 

 Having drawn new pixel, must update Δ(𝑎, 𝑏) for  next iteration; need to find 

either Δ(𝑎 +  1, 𝑏) 𝑜𝑟 Δ(𝑎 +  1, 𝑏 –  1) depending on pixel choice 

 Must add Δ𝐸(𝑎, 𝑏) or Δ𝑆𝐸(𝑎, 𝑏) to Δ(𝑎, 𝑏) 

 So we… 
 Look at 𝑑 to decide which to draw next, update 𝑥 and 𝑦 

 Update d using Δ𝐸(𝑎, 𝑏) 𝑜𝑟 Δ𝑆𝐸(𝑎, 𝑏)  

 Update each of Δ𝐸(𝑎, 𝑏) 𝑎𝑛𝑑 Δ𝑆𝐸(𝑎, 𝑏) for future use 

 Draw pixel 

Second Differences (2/2) 
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MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */  
    int x = 0, y = R; 
    int deltaE   = 2 * x + 3; 
    int deltaSE  = 2 * (x - y) + 5; 
    float decision = (x + 1) * (x + 1) + (y - 0.5) * (y - 0.5) – R*R; 
    WritePixel(x, y); 
 
    while ( y > x ) { 
        if (decision > 0) { // Move East 
            x++; WritePixel(x, y); 
            decision += deltaE; 
            deltaE += 2; deltaSE += 2; // Update delta 
        } else { // Move SouthEast  
            y--; x++; WritePixel(x, y); 
            decision += deltaSE; 
            deltaE += 2; deltaSE += 4; // Update delta 
        } 
    } 
} 

Midpoint Eighth Circle Algorithm 
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 Uses floats! 

 1 test, 3 or 4 additions per pixel 

 Initialization can be improved 

 Multiply everything by 4: No Floats! 

 Makes the components even, but sign of decision 
variable remains same 

Questions 

 Are we getting all pixels whose distance from the 
circle is less than ½? 

 Why is y > x the right criterion? 

 What if it were an ellipse? 

 

 

Analysis 
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