INTRODUCTION TO COMPUTER GRAPHICS
+
+

+
+

S
s

+ 4+ o+ o+

+ 4+ o+ o+
+
+
+

+ 4+ + + + + + 4+ o+ o+

+ + + + + 4+ 4+

L
+
+
+

+ + + + + + + 4+ o+

Scan Conversion

Andries van Dam

Scan Converting Lines
Line Drawing
» Draw a line on a raster screen between two points
» Why is this a difficult problem?
» Whatis “drawing” on a raster display?

» Whatis a “line” in raster world?

» Efficiency and appearance are both important
Problem Statement

» Given two points P and Q in XY plane, both with integer coordinates,
determine which pixels on raster screen should be on in order to draw a
unit-width line segment starting at P and ending at Q

What is Scan Conversion?

>

Final step of rasterisation (process of taking geometric shapes and
converting them into an array of pixels stored in the framebuffer to be
displayed)

Takes place after clipping occurs

All graphics packages do this at the end of the rendering pipeline
Takes triangles and maps them to pixels on the screen

Also takes into account other properties like lighting and shading, but
we'll focus first on algorithms for line scan conversion

Finding the next pixel:
Special cases:

>

Horizontal Line:

» Draw pixel P and increment x coordinate value by 1 to get next pixel.
Vertical Line:

» Draw pixel P and increment y coordinate value by 1 to get next pixel.
Diagonal Line:

» Draw pixel P and increment both x and y coordinate by 1 to get next pixel.
What should we do in general case?

» Increment x coordinate by 1 and choose point closest to line.

» But how do we measure “closest”?

Vertical Distance

» Why can we use vertical distance as
a measure of which point is closer?
p (le yl)

» ...because vertical distance is
proportional to actual distance

» Similar triangles show that true
distances to line (in blue) are Y
directly proportional to vertical
dls_tances to line (in black) for each (X2, V2)
point

P
<

» Therefore, point with smaller
vertical distance to line is closest to
line

Strategy 1 — Incremental Algorithm (1/3)

Basic Algorithm:
» Find equation of line that connects two points P and Q

» Starting with leftmost point, increment x; by 1 to calculate y; = m * x; + B where
m = slope, B =y intercept

» Draw pixel at (x;, Round(y;)) where Round (y;) =[.5 + y;]
Incremental Algorithm:
» Each iteration requires a floating-point multiplication
» Modify algorithm to use deltas
¥ Vier =y =mox (X1 — Xg)
¥ Vit =Yt m ok (X4 — xy)
» fAx=x;,1—x;=1,theny;,1=y;+m
» At each step, we make incremental calculations based on preceding step to
find next y value

Strategy 1 — Incremental A

gorithm (2/3)

D
UV

(xi, yi)

R\ (
N \J

/

(N
// (x; + 1, Round(y; + m))

. (gt 1Ly +m)

/

(x;, Round(y;))

\

Sample Code and Problems (3/3)

void Line(int x@, int y@, int x1, int yl1) {
int X, VY;

float dy = y1 - yo;
float dx = x1 - x@; Since slope is fractional, need special

float m = dy / dx; ‘/////////'casefbrverﬁcalhnes(dx::O)

= yO;
iop {x = x0; X < x1; ++x) { *//////////,Ihnuuhngtakesthne
WritePixel(x, Round(y));
y =y +m
}

Strategy 2 — Midpoint Line Algorithm (1/3)

» Assume that line’s slope is shallow and positive (0 < slope < 1);
other slopes can be handled by suitable reflections about
principle axes

» Call lower left endpoint (xy, yg) and upper right endpoint (x4, y;)
» Assume that we have just selected pixel P at (xp, yp)

» Next, we must choose between pixel to right (E pixel), or one
right and one up (NE pixel)

» Let Q be intersection point of line being scan-converted and
vertical line x = xp +1

Strategy 2 — Midpoint Line Algorithm (2/3)

A
\V

NE pixel

~ A
4

\/

Previous pixel

P = (xp,yp) ~

_E}_______________ I

A\
\1/

A
U

6} I

| TE pixel
x = xp + 1 (dashed)

N
\

Midpoint M

10

Strategy 2- Midpoint Line Algorithm (3/3)

Line passes between E and NE

Point that is closer to intersection
point Q must be chosen

Observe on which side of line
midpoint M lies:
» Eiscloser to line if midpoint M lies

above line, i.e., line crosses bottom
half

» NE is closer to line if midpoint M lies
below line, i.e., line crosses top half

Error (vertical distance between
chosen pixel and actual line) is
always < .5

NE pixel

Q-
— M

4? \\/ E pixel

For line shown, algorithm chooses
NE as next pixel.

Now, need to find a way to calculate
on which side of line midpoint lies

11

General Line Equation

. . . d
» Line equation as function: f(x) =y =mx + B = =2

EX-I-B

» Line equation as implicit function: f(x,y) =ax+ by +c =20
» Avoids infinite slopes, provides symmetry between x and y
» So from above,
yrdx=dy x+B-dx
dy x—ydx+B-dx =0
~a=dy,b=—dx,c=B-dx
» Properties (proof by case analysis):
» f(xm ¥m) = 0 when any point m is on line
» f(Xm, ¥m) < 0 when any point m is above line
» f(xm, Vm) > 0 when any point m is below line
» Our decision will be based on value of function at midpoint M at (xp + 1, yp +.5)

12

Decision Variable
Decision Variable d :

» We only need sign of f(xp + 1, yp +.5) to see where the line lies, and then
pick nearest pixel.

4 d :f(xP + 1,yp + 5)
» ifd > 0 choose pixel NE
» if d < 0 choose pixel E

» if d = 0 choose either one consistently

How do we incrementally update d?

» On basis of picking E or NE, figure out location of M for the next pixel, and
corresponding value d for next grid line.

» We can derive d for the next pixel based on our current decision.

13

Incrementing Decision Variable if E was chosen:
Increment M by one in x direction:
doyg =alxp+1)+b(yp+.5) +c
» dpew = f(xp +2,yp +.5)
=alxp+2)+b(yp+.5)+¢c
» dypew — dyig is the incremental difference AE
» dpew = doig +a = AE =a = dy (2 slides back)

» We can compute value of decision variable at next step incrementally
without computing F(M) directly

¥ dpew = dog +AE=dgq +dy
» AE can be thought of as correction or update factor to take d,;; to d, o

v

» Itisreferred to as forward difference

14

If NE was chosen:

Increment M by one in both x and y directions:
» dpew = f(xp +2,yp +1.5)
=a(xp+2)+b(yp +1.5)+c
» ANE =d o, — dpo1a
» dpew = dojgt+a+b—->ANE=a+ b =dy—dx
» Thus, incrementally,
dpew = doig + ANE=d ;g +dy — dx

15

Summary (1/2)

)

At each step, algorithm chooses between 2 pixels based on
sign of decision variable calculated in previous iteration.

[t then updates decision variable by adding either AE or
ANE to old value depending on choice of pixel. Simple
additions only!

First pixel is first endpoint (x,, o), so we can directly
calculate initial value of d for choosing between E and NE.

16

Summary (2/2)

» First midpoint for first d = dgg isat (xg + 1,y +.5)
» f(xg+1,y0+.5)
=a(xo+ 1)+ b(yy+.5) +c

=ax0+by0+a+§+c
b
=f(x0,y0) +a+3

» But (xg,y0) is point on line, so f (xy, yy) = 0
dx

» Therefore, dgiyre = a +§ =dy — o

» use dg,r+to choose second pixel, etc.
» To eliminate fraction in dg; g,
» redefine f by multiplying it by 2; f(x,y) = 2(ax + by + ¢)
» This multiplies each constant and decision variable by 2, but does not change sign

» Note: this is identical to “Bresenham’s algorithm”, though derived by different means.
That won’t be true for circle and ellipse scan conversion.

17

Example Code
void MidpointLine(int x0, int y@, int x1, int yl) {
int dx = (x1 - x0), dy = (y1 - y0@);

intd=2%*dy - dx;
int incrE = 2 * dy;
int incrNE = 2 * (dy - dx);

int x = x0, y = y0;
WritePixel(x, y);

while (x < x1) {
if (d <= 0) d = d + incrE; // East Case
else { d = d + incrNE; ++y; } // Northeast Case
++X;
WritePixel(x, y);

18

Scan Converting Circles .17
Version 1: really bad
For x from —R to R:

y =VRZ — x2;

WritePixel(round(x), round(y)); (17,0)
WritePixel(round(x), round(—y)); 0, 17)

Version 2: slightly less bad

For x from 0 to 360:
WritePixel(round(R cos(x)), round(R sin(x)));

(17,0)

19

Version 3 — Use Symmetry

Symmetry:
» If (xy + a,yy + b) is on circle centered at
(0, ¥o):

» Then (xo+a,y,xb)and (xy £ b,y, + a)
are also on the circle

» Hence there is 8-way symmetry

» Reduce the problem to finding the pixels
for 1/8 of the circle.

(X +a, Y, +b)

s

(Xo» Yo)

(X-X0)* + (¥-Yo)* = R?

20

Using the Symmetry
» Scan top right 1/8 of circle of radius R
» Circle starts at (xg, yo + R)

» Let’s use another incremental
algorithm with decision variable
evaluated at midpoint

\w

21

The incremental algorithm — a sketch

X = X0, y = y0 + R; WritePixel(x, y);

for (x = x + 1; (x = x0) < (y - y0); x++) {
if (decision_var < 0) {
// move east
update decision variable
} else {
// move south east
update decision variable
y--5
}

WritePixel(x, y);
}

Note: can re%lace all occurrences of xq, yowith 0, shifting
coordinates by (—x,, —y,)

I
L

/

22

What we need for the Incremental Algorithm

» Decision variable
» negative if we move E, positive if we move SE (or vice versa).
» Follow line strategy: Use implicit equation of circle
» f(x,y) =x*+y*—R*=0
» f(x,y) is zero on circle, negative inside, positive outside
» If we are at pixel (x,y) examine (x + 1,y)and (x + 1,y — 1)
» Compute fat the midpoint.

23

The Decision Variable

» Evaluate f(x,y) = x* + y* — R? at the point: 6 DD
1 P = (Xpr yp) "_'—.mk_m
(X + 1,y - —> (J {:}\

Pl
]

2 SE
__MSE
» We are asking: “Is f(M) =
1

f(x +1y- 5) = (x + D*+(y —%)Z—R2

positive or negative?” (it is zero on circle)

» If negative, midpoint inside circle, choose E

» vertical distance to the circle is less at (x + 1,y) than at
x+1,y—-1)

» If positive, opposite is true, choose SE

24

The right decision variable?
Decision based on vertical distance

v Vv

Ok for lines, since d and d,,, are proportional

ver

v

For circles, not true:

d((x +1,y), Circ) =J(x+12+y2—R
d((x +1,y—1), Circ) = \/(x +1)?+(y—1)?—R

v

Which d is closer to zero? (i.e., which value below is closest to R?):

JaE+1DZ+y2or(x+ 1%+ (y — 1)2

25

Alternate Phrasing (1/3)

» We could ask instead: “Is (x + 1)? + y? or (x + 1)? + (y — 1)? closer to

R??”
» The two values in equation above differ by:
r [+ D2+ - [+ D2+ v - D=2y -1

fr=12+17 =290
fSE =]J +]62 =257

(1. 16)
@5E

f. — fiz =290 —257 =33
2y —1=2(17)—1=33

26

Alternate Phrasing (2/3)

» The selcond value, which is always less, is closer if its difference from R? is less
than: 3 2y — 1)

ie,if RZ—[(x+12+(@y-1%<z@2y—-1)

then O<y—%+(x+1)2+(y—1)2—R2
O<(x+1)2+yz—2y+1+y—%—R2
O<(x+1)2+yz—y+%—R2
0<(x+ 12+ (y—)+;—R?

27

Alternate Phrasing (3/3)

» The radial distance decision is whether

1\° 1
d, = 1) +|y—5) +-—R?
1 =@+1) (2) 2
1S positive or negative.

» The vertical distance decision is whether
2
d, = (x+1)2+(y—%) — R?
is positive or negative; d;and d, are % apart.

» The integer d, is positive only if d, + % is positive (except special case
where d, = 0: remember you're using integers).

28

Incremental Computation Revisited (1/2)

» How can we compute the value of
N
fOoy) =@+ 1%+ (y—3) - R?
at successive points? (vertical distance approach)

» Answer:
» Notethat f(x +1,y) — f(x,y)
=Ap (x,y) =2x+3
» andthat f(x+1,y—1) — f(x,y)
=Asp(x,y) =2x -2y +5

29

Incremental Computation (2/2)

» If we move E, update d = f(M) by
adding 2x + 3

» If we move SE, update d by adding
2x — 2y +5

» Forward differences of a 15t degree
polynomial are constants and those
of a 2"d degree polynomial are 15t
degree polynomials
» this “first order forward difference,”

like a partial derivative, is one
degree lower

30

Second Differences (1/2)

» The function Ag(x, y) = 2x + 3 is linear, hence amenable to incremental
computation:
Ag(x +1,y) — Ag(x,y) = 2
Ap(x+1,y—1) — Ag(x,y) =2

» Similarly

Asg(x +1,y) — Asp(x,y) = 2
Asg(x + 1,y — 1) — Ase(x,y) = 4

31

Second Differences (2/2)

For any step, can compute new Ag(x, y) from old Ag(x, y) by adding
appropriate second constant increment - update delta terms as we move. This
is also true of Agg(x, y).

» Having drawn pixel (a, b), decide location of new pixel at (a + 1, b) or
(a + 1,b - 1), using previously computed A(a, b)

» Having drawn new pixel, must update A(a, b) for next iteration; need to find
either A(a + 1,b) or A(a + 1,b - 1) depending on pixel choice
» Mustadd A;(a, b) or A¢z(a, b) to A(a, b)
» So we...
» Look atd to decide which to draw next, update x and y
» Update d using Ag(a, b) or Agz(a, b)
» Update each of Ag(a, b) and A¢;(a, b) for future use
» Draw pixel

32

Midpoint Eighth Circle Algorithm

MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */
int x = 0, y = R;

int deltaE = * X + 3;
int deltaSE =2 * (x - y) + 5;
float decision = (x + 1) * (x + 1) + (y -) * (y -) - R*R;

WritePixel(x, y);

while (y > x) {
if (decision > ©) { // Move East
x++; WritePixel(x, y);
decision += deltakE;
deltak += 2; deltaSE += 2; // Update delta
} else { // Move SouthEast
y--3; X++; WritePixel(x, y);
decision += deltaSE;
deltak += 2; deltaSE += 4; // Update delta

Analysis

>
>
>
>

Uses floats!
1 test, 3 or 4 additions per pixel
Initialization can be improved

Multiply everything by 4: No Floats!

» Makes the components even, but sign of decision
variable remains same

Questions

>

Are we getting all pixels whose distance from the
circle is less than 72?

Why is y > x the right criterion?

What if it were an ellipse?

34

