
Scan Conversion
Andries van Dam

INTRODUCTION TO COMPUTER GRAPHICS

1

Line Drawing

 Draw a line on a raster screen between two points

 Why is this a difficult problem?

 What is “drawing” on a raster display?

 What is a “line” in raster world?

 Efficiency and appearance are both important

Problem Statement

 Given two points P and Q in XY plane, both with integer coordinates,
determine which pixels on raster screen should be on in order to draw a
unit-width line segment starting at P and ending at Q

Scan Converting Lines

2

 Final step of rasterisation (process of taking geometric shapes and
converting them into an array of pixels stored in the framebuffer to be
displayed)

 Takes place after clipping occurs

 All graphics packages do this at the end of the rendering pipeline

 Takes triangles and maps them to pixels on the screen

 Also takes into account other properties like lighting and shading, but
we’ll focus first on algorithms for line scan conversion

What is Scan Conversion?

3

Special cases:
 Horizontal Line:

 Draw pixel P and increment x coordinate value by 1 to get next pixel.

 Vertical Line:

 Draw pixel P and increment y coordinate value by 1 to get next pixel.

 Diagonal Line:

 Draw pixel P and increment both x and y coordinate by 1 to get next pixel.

 What should we do in general case?

 Increment x coordinate by 1 and choose point closest to line.

 But how do we measure “closest”?

Finding the next pixel:

4

 Why can we use vertical distance as
a measure of which point is closer?

 … because vertical distance is
proportional to actual distance

 Similar triangles show that true
distances to line (in blue) are
directly proportional to vertical
distances to line (in black) for each
point

 Therefore, point with smaller
vertical distance to line is closest to
line

Vertical Distance

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

5

Basic Algorithm:
 Find equation of line that connects two points P and Q

 Starting with leftmost point , increment 𝑥𝑖 by 1 to calculate 𝑦𝑖 = 𝑚 ∗ 𝑥𝑖 + B where
𝑚 = slope, B = y intercept

 Draw pixel at (𝑥𝑖, Round(𝑦𝑖)) where Round (𝑦𝑖) = .5 + 𝑦𝑖

Incremental Algorithm:

 Each iteration requires a floating-point multiplication
 Modify algorithm to use deltas

 (𝑦𝑖+1 − 𝑦𝑖) = 𝑚 ∗ (𝑥𝑖+1 − 𝑥𝑖)

 𝑦𝑖+1 = 𝑦𝑖 + 𝑚 ∗ (𝑥𝑖+1 − 𝑥𝑖)

 If  𝑥 = 𝑥𝑖+1 − 𝑥𝑖 = 1, then 𝑦𝑖+1 = 𝑦𝑖 + 𝑚

 At each step, we make incremental calculations based on preceding step to
find next y value

Strategy 1 – Incremental Algorithm (1/3)

6

Strategy 1 – Incremental Algorithm (2/3)

(𝑥𝑖 + 1, 𝑅𝑜𝑢𝑛𝑑 𝑦𝑖 + 𝑚)

(𝑥𝑖 , 𝑦𝑖)

(𝑥𝑖 , 𝑅𝑜𝑢𝑛𝑑 𝑦𝑖)

(𝑥𝑖 + 1, 𝑦𝑖 + 𝑚)

7

Sample Code and Problems (3/3)

void Line(int x0, int y0, int x1, int y1) {

 int x, y;

 float dy = y1 – y0;

 float dx = x1 – x0;

 float m = dy / dx;

 y = y0;

 for (x = x0; x < x1; ++x) {

 WritePixel(x, Round(y));

 y = y + m;

 }

}

Rounding takes time

Since slope is fractional, need special
case for vertical lines (dx = 0)

8

 Assume that line’s slope is shallow and positive (0 < slope < 1);
other slopes can be handled by suitable reflections about
principle axes

 Call lower left endpoint (𝑥0, 𝑦0) and upper right endpoint (𝑥1, 𝑦1)

 Assume that we have just selected pixel 𝑃 at (𝑥𝑃 , 𝑦𝑃)

 Next, we must choose between pixel to right (E pixel), or one
right and one up (NE pixel)

 Let Q be intersection point of line being scan-converted and
vertical line 𝑥 = 𝑥𝑃 +1

Strategy 2 – Midpoint Line Algorithm (1/3)

9

Strategy 2 – Midpoint Line Algorithm (2/3)

Previous pixel

E pixel

NE pixel

Midpoint M
Q

𝑃 = (𝑥𝑃, 𝑦𝑃)

𝑥 = 𝑥𝑃 + 1 (dashed)

10

 Line passes between E and NE

 Point that is closer to intersection
point 𝑄 must be chosen

 Observe on which side of line
midpoint 𝑀 lies:
 E is closer to line if midpoint 𝑀 lies

above line, i.e., line crosses bottom
half

 NE is closer to line if midpoint 𝑀 lies
below line, i.e., line crosses top half

 Error (vertical distance between
chosen pixel and actual line) is
always ≤ .5

Strategy 2- Midpoint Line Algorithm (3/3)

For line shown, algorithm chooses
NE as next pixel.

Now, need to find a way to calculate
on which side of line midpoint lies

E pixel

NE pixel

𝑀

𝑄

11

 Line equation as function: 𝑓 𝑥 = 𝑦 = 𝑚𝑥 + 𝐵 =
𝑑𝑦

𝑑𝑥
𝑥 + 𝐵

 Line equation as implicit function: 𝑓 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0
 Avoids infinite slopes, provides symmetry between x and y

 So from above,
𝑦 ∙ 𝑑𝑥 = 𝑑𝑦 ∙ 𝑥 + 𝐵 ∙ 𝑑𝑥

𝑑𝑦 ∙ 𝑥 − 𝑦 ∙ 𝑑𝑥 + 𝐵 ∙ 𝑑𝑥 = 0
∴ 𝑎 = 𝑑𝑦, 𝑏 = −𝑑𝑥, 𝑐 = 𝐵 ∙ 𝑑𝑥

 Properties (proof by case analysis):
 𝑓 𝑥𝑚, 𝑦𝑚 = 0 when any point 𝑚 is on line
 𝑓 𝑥𝑚, 𝑦𝑚 < 0 when any point 𝑚 is above line

 𝑓 𝑥𝑚, 𝑦𝑚 > 0 when any point 𝑚 is below line

 Our decision will be based on value of function at midpoint 𝑀 at (𝑥𝑃 + 1, 𝑦𝑃 + .5)

General Line Equation

12

Decision Variable 𝑑 :

 We only need sign of f(𝑥𝑃 + 1, 𝑦𝑃 + .5) to see where the line lies, and then
pick nearest pixel.

 𝑑 = f(𝑥𝑃 + 1, 𝑦𝑃 + .5)

 if 𝑑 > 0 choose pixel NE

 if 𝑑 < 0 choose pixel E

 if 𝑑 = 0 choose either one consistently

How do we incrementally update 𝑑?

 On basis of picking E or NE, figure out location of 𝑀 for the next pixel, and
corresponding value 𝑑 for next grid line.

 We can derive 𝑑 for the next pixel based on our current decision.

Decision Variable

13

Increment M by one in x direction:

 𝑑𝑜𝑙𝑑 = 𝑎 𝑥𝑃 + 1 + 𝑏 𝑦𝑃 + .5 + 𝑐

 𝑑𝑛𝑒𝑤 = 𝑓(𝑥𝑃 + 2, 𝑦𝑃 + .5)

 = 𝑎 𝑥𝑃 + 2 + 𝑏 𝑦𝑃 + .5 + 𝑐

 𝑑𝑛𝑒𝑤 − 𝑑𝑜𝑙𝑑 is the incremental difference E
 𝑑𝑛𝑒𝑤 = 𝑑𝑜𝑙𝑑 + 𝑎 → E = 𝑎 = 𝑑𝑦 (2 slides back)

 We can compute value of decision variable at next step incrementally
without computing F(M) directly
 𝑑𝑛𝑒𝑤 = 𝑑𝑜𝑙𝑑 + E = 𝑑𝑜𝑙𝑑 + 𝑑𝑦

 E can be thought of as correction or update factor to take 𝑑𝑜𝑙𝑑 to 𝑑𝑛𝑒𝑤

 It is referred to as forward difference

Incrementing Decision Variable if E was chosen:

14

Increment M by one in both x and y directions:

 𝑑𝑛𝑒𝑤 = 𝑓 𝑥𝑃 + 2, 𝑦𝑃 + 1.5

 = 𝑎 𝑥𝑃 + 2 + 𝑏 𝑦𝑃 + 1.5 + 𝑐

 NE = 𝑑𝑛𝑒𝑤 − 𝑑𝑜𝑙𝑑

 𝑑𝑛𝑒𝑤 = 𝑑𝑜𝑙𝑑 + 𝑎 + 𝑏 → NE = 𝑎 + 𝑏 = 𝑑𝑦 − 𝑑𝑥

 Thus, incrementally,

 𝑑𝑛𝑒𝑤 = 𝑑𝑜𝑙𝑑 + NE = 𝑑𝑜𝑙𝑑 + 𝑑𝑦 − 𝑑𝑥

If NE was chosen:

15

 At each step, algorithm chooses between 2 pixels based on
sign of decision variable calculated in previous iteration.

 It then updates decision variable by adding either E or
NE to old value depending on choice of pixel. Simple
additions only!

 First pixel is first endpoint (𝑥0, 𝑦0), so we can directly
calculate initial value of d for choosing between E and NE.

Summary (1/2)

16

 First midpoint for first 𝑑 = 𝑑𝑠𝑡𝑎𝑟𝑡 is at (𝑥0 + 1, 𝑦0 + .5)

 f (𝑥0 + 1, 𝑦0 + .5)

 = 𝑎 𝑥0 + 1 + 𝑏 𝑦0 + .5 + 𝑐

 = 𝑎𝑥0 + 𝑏𝑦0 + 𝑎 +
𝑏

2
+ c

 = f 𝑥0, 𝑦0 + 𝑎 +
𝑏

2

 But 𝑥0, 𝑦0 is point on line, so f 𝑥0, 𝑦0 = 0

 Therefore, 𝑑𝑠𝑡𝑎𝑟𝑡 = 𝑎 +
𝑏

2
= 𝑑𝑦 −

𝑑𝑥

2

 use 𝑑𝑠𝑡𝑎𝑟𝑡to choose second pixel, etc.

 To eliminate fraction in 𝑑𝑠𝑡𝑎𝑟𝑡:
 redefine f by multiplying it by 2; 𝑓 𝑥, 𝑦 = 2 𝑎𝑥 + 𝑏𝑦 + 𝑐

 This multiplies each constant and decision variable by 2, but does not change sign

 Note: this is identical to “Bresenham’s algorithm”, though derived by different means.
That won’t be true for circle and ellipse scan conversion.

Summary (2/2)

17

void MidpointLine(int x0, int y0, int x1, int y1) {
 int dx = (x1 - x0), dy = (y1 - y0);
 int d = 2 * dy - dx;
 int incrE = 2 * dy;
 int incrNE = 2 * (dy - dx);
 int x = x0, y = y0;
 WritePixel(x, y);

 while (x < x1) {
 if (d <= 0) d = d + incrE; // East Case
 else { d = d + incrNE; ++y; } // Northeast Case
 ++x;
 WritePixel(x, y);
 }
}

Example Code

18

Version 1: really bad
For 𝑥 from −𝑅 𝑡𝑜 𝑅:

 𝑦 = 𝑅2 − 𝑥2;

 WritePixel(round(𝑥), round(𝑦));

 WritePixel(round(𝑥), round(−𝑦));

Version 2: slightly less bad
For 𝑥 from 0 to 360:

 WritePixel(round(𝑅 cos (𝑥)), round(𝑅 sin (𝑥)));

Scan Converting Circles

(17, 0)

(0, 17)

(17, 0)

(0, 17)

19

Version 3 — Use Symmetry

R

(x0 + a, y0 + b)

(x-x0)
2 + (y-y0)

2 = R2

(x0, y0)

Symmetry:

 If 𝑥0 + 𝑎, 𝑦0 + 𝑏 is on circle centered at
𝑥0, 𝑦0 :

 Then 𝑥0 ± 𝑎, 𝑦0 ± 𝑏 and 𝑥0 ± 𝑏, 𝑦0 ± 𝑎
are also on the circle

 Hence there is 8-way symmetry

 Reduce the problem to finding the pixels
for 1/8 of the circle.

20

 Scan top right 1/8 of circle of radius 𝑅

 Circle starts at 𝑥0, 𝑦0 + 𝑅

 Let’s use another incremental
algorithm with decision variable
evaluated at midpoint

Using the Symmetry

(x0, y0)

21

x = x0, y = y0 + R; WritePixel(x, y);

for (x = x + 1; (x – x0) < (y – y0); x++) {
 if (decision_var < 0) {
 // move east
 update decision variable
 } else {
 // move south east
 update decision variable
 y--;
 }

 WritePixel(x, y);
}

Note: can replace all occurrences of 𝑥0, 𝑦0with 0, shifting
coordinates by −𝑥0, −𝑦0

The incremental algorithm – a sketch

22

 Decision variable

 negative if we move E, positive if we move SE (or vice versa).

 Follow line strategy: Use implicit equation of circle

 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 𝑅2 = 0

 𝑓 𝑥, 𝑦 is zero on circle, negative inside, positive outside

 If we are at pixel 𝑥, 𝑦 examine 𝑥 + 1, 𝑦 and 𝑥 + 1, 𝑦 − 1

 Compute f at the midpoint.

What we need for the Incremental Algorithm

23

 Evaluate 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 𝑅2 at the point:

𝑥 + 1, 𝑦 −
1

2

 We are asking: “Is 𝑓 𝑀 =

𝑓 𝑥 + 1, 𝑦 −
1

2
= (𝑥 + 1)2+(𝑦 −

1

2
)2−𝑅2

 positive or negative?” (it is zero on circle)

The Decision Variable

 If negative, midpoint inside circle, choose E
 vertical distance to the circle is less at (𝑥 + 1, 𝑦) than at

𝑥 + 1, 𝑦 − 1

 If positive, opposite is true, choose SE

 24

 Decision based on vertical distance

 Ok for lines, since d and dvert are proportional

 For circles, not true:

𝑑 𝑥 + 1, 𝑦 , 𝐶𝑖𝑟𝑐 = 𝑥 + 1 2 + 𝑦2 − 𝑅

𝑑 𝑥 + 1, 𝑦 − 1 , 𝐶𝑖𝑟𝑐 = 𝑥 + 1 2 + (𝑦 − 1)2− 𝑅

 Which d is closer to zero? (i.e., which value below is closest to R?):

𝑥 + 1 2 + 𝑦2 or 𝑥 + 1 2 + (𝑦 − 1)2

The right decision variable?

25

 We could ask instead: “Is 𝑥 + 1 2 + 𝑦2 or 𝑥 + 1 2 + (𝑦 − 1)2 closer to
𝑅2?”

 The two values in equation above differ by:

 𝑥 + 1 2 + 𝑦2 − 𝑥 + 1 2 + 𝑦 − 1 2 = 2𝑦 − 1

Alternate Phrasing (1/3)

26

 The second value, which is always less, is closer if its difference from R2 is less
than:

1

2
(2𝑦 − 1)

 i.e., if 𝑅2 − 𝑥 + 1 2 + 𝑦 − 1 2 <
1

2
(2𝑦 − 1)

 then 0 < 𝑦 −
1

2
+ 𝑥 + 1 2 + 𝑦 − 1 2 − R2

 0 < 𝑥 + 1 2 + 𝑦2 − 2𝑦 + 1 + 𝑦 −
1

2
− 𝑅2

 0 < 𝑥 + 1 2 + 𝑦2 − 𝑦 +
1

2
− 𝑅2

 0 < 𝑥 + 1 2 + (𝑦 −
1

2
)2+

1

4
− 𝑅2

Alternate Phrasing (2/3)

27

 The radial distance decision is whether

𝑑1 = 𝑥 + 1 2 + 𝑦 −
1

2

2

+
1

4
− 𝑅2

 is positive or negative.

 The vertical distance decision is whether

𝑑2 = 𝑥 + 1 2 + 𝑦 −
1

2

2
− 𝑅2

 is positive or negative; 𝑑1and 𝑑2 are ¼ apart.

 The integer 𝑑1 is positive only if 𝑑2 + ¼ is positive (except special case
where 𝑑2 = 0: remember you’re using integers).

Alternate Phrasing (3/3)

28

 How can we compute the value of

 𝑓 𝑥, 𝑦 = 𝑥 + 1 2 + 𝑦 −
1

2

2
− 𝑅2

 at successive points? (vertical distance approach)

 Answer:
 Note that 𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥, 𝑦

 = Δ𝐸 𝑥, 𝑦 = 2𝑥 + 3

 and that 𝑓 𝑥 + 1, 𝑦 − 1 − 𝑓(𝑥, 𝑦)

 = Δ𝑆𝐸 𝑥, 𝑦 = 2𝑥 − 2𝑦 + 5

Incremental Computation Revisited (1/2)

29

 If we move E, update d = f(M) by
adding 2𝑥 + 3

 If we move SE, update d by adding
2𝑥 − 2𝑦 + 5

 Forward differences of a 1st degree
polynomial are constants and those
of a 2nd degree polynomial are 1st
degree polynomials

 this “first order forward difference,”
like a partial derivative, is one
degree lower

Incremental Computation (2/2)

30

 The function ΔE 𝑥, 𝑦 = 2𝑥 + 3 is linear, hence amenable to incremental
computation:

ΔE 𝑥 + 1, 𝑦 − ΔE 𝑥, 𝑦 = 2
ΔE 𝑥 + 1, 𝑦 − 1 − ΔE 𝑥, 𝑦 = 2

 Similarly
ΔSE 𝑥 + 1, 𝑦 − ΔSE 𝑥, 𝑦 = 2

ΔSE 𝑥 + 1, 𝑦 − 1 − ΔSE 𝑥, 𝑦 = 4

Second Differences (1/2)

31

 For any step, can compute new ΔE 𝑥, 𝑦 from old ΔE 𝑥, 𝑦 by adding
appropriate second constant increment – update delta terms as we move. This
is also true of ΔSE 𝑥, 𝑦 .

 Having drawn pixel 𝑎, 𝑏 , decide location of new pixel at 𝑎 + 1, 𝑏 or

(𝑎 + 1, 𝑏 – 1), using previously computed Δ(𝑎, 𝑏)

 Having drawn new pixel, must update Δ(𝑎, 𝑏) for next iteration; need to find

either Δ(𝑎 + 1, 𝑏) 𝑜𝑟 Δ(𝑎 + 1, 𝑏 – 1) depending on pixel choice

 Must add Δ𝐸(𝑎, 𝑏) or Δ𝑆𝐸(𝑎, 𝑏) to Δ(𝑎, 𝑏)

 So we…
 Look at 𝑑 to decide which to draw next, update 𝑥 and 𝑦

 Update d using Δ𝐸(𝑎, 𝑏) 𝑜𝑟 Δ𝑆𝐸(𝑎, 𝑏)

 Update each of Δ𝐸(𝑎, 𝑏) 𝑎𝑛𝑑 Δ𝑆𝐸(𝑎, 𝑏) for future use

 Draw pixel

Second Differences (2/2)

32

MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */
 int x = 0, y = R;
 int deltaE = 2 * x + 3;
 int deltaSE = 2 * (x - y) + 5;
 float decision = (x + 1) * (x + 1) + (y - 0.5) * (y - 0.5) – R*R;
 WritePixel(x, y);

 while (y > x) {
 if (decision > 0) { // Move East
 x++; WritePixel(x, y);
 decision += deltaE;
 deltaE += 2; deltaSE += 2; // Update delta
 } else { // Move SouthEast
 y--; x++; WritePixel(x, y);
 decision += deltaSE;
 deltaE += 2; deltaSE += 4; // Update delta
 }
 }
}

Midpoint Eighth Circle Algorithm

33

 Uses floats!

 1 test, 3 or 4 additions per pixel

 Initialization can be improved

 Multiply everything by 4: No Floats!

 Makes the components even, but sign of decision
variable remains same

Questions

 Are we getting all pixels whose distance from the
circle is less than ½?

 Why is y > x the right criterion?

 What if it were an ellipse?

Analysis

34

