INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam

Scan Converting Lines

Line Drawing

- Draw a line on a raster screen between two points
- Why is this a difficult problem?
- What is "drawing" on a raster display?
- What is a "line" in raster world?
- Efficiency and appearance are both important

Problem Statement

- Given two points P and Q in XY plane, both with integer coordinates, determine which pixels on raster screen should be on in order to draw a unit-width line segment starting at P and ending at Q

What is Scan Conversion?

- Final step of rasterisation (process of taking geometric shapes and converting them into an array of pixels stored in the framebuffer to be displayed)
- Takes place after clipping occurs
- All graphics packages do this at the end of the rendering pipeline
- Takes triangles and maps them to pixels on the screen
- Also takes into account other properties like lighting and shading, but we'll focus first on algorithms for line scan conversion

Finding the next pixel:

Special cases:

- Horizontal Line:
- Draw pixel P and increment x coordinate value by 1 to get next pixel.
- Vertical Line:
- Draw pixel P and increment y coordinate value by 1 to get next pixel.
- Diagonal Line:
- Draw pixel P and increment both x and y coordinate by 1 to get next pixel.
- What should we do in general case?
- Increment x coordinate by 1 and choose point closest to line.
- But how do we measure "closest"?

Vertical Distance

- Why can we use vertical distance as a measure of which point is closer?
- ... because vertical distance is proportional to actual distance
- Similar triangles show that true distances to line (in blue) are directly proportional to vertical distances to line (in black) for each point
- Therefore, point with smaller vertical distance to line is closest to line

Strategy 1 - Incremental Algorithm (1/3)

Basic Algorithm:

- Find equation of line that connects two points P and Q
- Starting with leftmost point , increment x_{i} by 1 to calculate $y_{i}=m * x_{i}+$ B where $m=$ slope, $\mathrm{B}=y$ intercept
- Draw pixel at $\left(x_{i}, \operatorname{Round}\left(y_{i}\right)\right)$ where Round $\left(y_{i}\right)=\left\lfloor .5+y_{i}\right\rfloor$

Incremental Algorithm:

- Each iteration requires a floating-point multiplication
- Modify algorithm to use deltas
- $\left(y_{i+1}-y_{i}\right)=m *\left(x_{i+1}-x_{i}\right)$
- $y_{i+1}=y_{i}+m *\left(x_{i+1}-x_{i}\right)$
- If $\Delta x=x_{i+1}-x_{i}=1$, then $y_{i+1}=y_{i}+m$
- At each step, we make incremental calculations based on preceding step to find next y value

Strategy 1 - Incremental Algorithm (2/3)

Sample Code and Problems (3/3)

```
void Line(int x0, int y0, int x1, int y1) {
```

 int \(x, y\);
 float dy = y1 - y0;
 float \(d x=x 1-x 0 ;\)
 float \(m=d y / d x\);
 Since slope is fractional, need special
 case for vertical lines (\(\mathrm{dx}=0\))
    ```
    y = y0;
    for (x = x0; x < x1; ++x) {
        WritePixel( x, Round(y) )
        y = y + m;
    }
}
```


Strategy 2 - Midpoint Line Algorithm (1/3)

- Assume that line's slope is shallow and positive ($0<$ slope <1); other slopes can be handled by suitable reflections about principle axes
- Call lower left endpoint $\left(x_{0}, y_{0}\right)$ and upper right endpoint $\left(x_{1}, y_{1}\right)$
- Assume that we have just selected pixel P at $\left(x_{P}, y_{P}\right)$
- Next, we must choose between pixel to right (E pixel), or one right and one up (NE pixel)
- Let Q be intersection point of line being scan-converted and vertical line $x=x_{P}+1$

Strategy 2 - Midpoint Line Algorithm (2/3)

Strategy 2- Midpoint Line Algorithm (3/3)

- Line passes between E and NE
- Point that is closer to intersection point Q must be chosen
- Observe on which side of line midpoint M lies:
- E is closer to line if midpoint M lies above line, i.e., line crosses bottom half
- NE is closer to line if midpoint M lies below line, i.e., line crosses top half
- Error (vertical distance between chosen pixel and actual line) is always $\leq .5$

For line shown, algorithm chooses NE as next pixel.
Now, need to find a way to calculate on which side of line midpoint lies

General Line Equation

- Line equation as function: $f(x)=y=m x+B=\frac{d y}{d x} x+B$
- Line equation as implicit function: $f(x, y)=a x+b y+c=0$
- Avoids infinite slopes, provides symmetry between x and y
- So from above,

$$
\begin{gathered}
y \cdot d x=d y \cdot x+B \cdot d x \\
d y \cdot x-y \cdot d x+B \cdot d x=0 \\
\therefore a=d y, b=-d x, c=B \cdot d x
\end{gathered}
$$

- Properties (proof by case analysis):
- $f\left(x_{m}, y_{m}\right)=0$ when any point m is on line
- $f\left(x_{m}, y_{m}\right)<0$ when any point m is above line
- $f\left(x_{m}, y_{m}\right)>0$ when any point m is below line
- Our decision will be based on value of function at midpoint M at $\left(x_{P}+1, y_{P}+.5\right)$

Decision Variable

Decision Variable d:

, We only need sign of $f\left(x_{P}+1, y_{P}+.5\right)$ to see where the line lies, and then pick nearest pixel.
, $d=f\left(x_{P}+1, y_{P}+.5\right)$

- if $d>0$ choose pixel NE
- if $d<0$ choose pixel E
- if $d=0$ choose either one consistently

How do we incrementally update d ?

- On basis of picking E or NE, figure out location of M for the next pixel, and corresponding value d for next grid line.
- We can derive d for the next pixel based on our current decision.

Incrementing Decision Variable if E was chosen:

Increment \boldsymbol{M} by one in \boldsymbol{x} direction:

- $d_{\text {old }}=a\left(x_{P}+1\right)+b\left(y_{P}+.5\right)+c$
- $d_{\text {new }}=f\left(x_{P}+2, y_{P}+.5\right)$
$=a\left(x_{P}+2\right)+b\left(y_{P}+.5\right)+c$
- $d_{\text {new }}-d_{\text {old }}$ is the incremental difference $\Delta \mathrm{E}$
- $d_{\text {new }}=d_{\text {old }}+a \rightarrow \Delta \mathrm{E}=a=d y$ (2 slides back)
- We can compute value of decision variable at next step incrementally without computing $F(M)$ directly
- $d_{\text {new }}=d_{\text {old }}+\Delta \mathrm{E}=d_{\text {old }}+d y$
- $\Delta \mathrm{E}$ can be thought of as correction or update factor to take $d_{\text {old }}$ to $d_{\text {new }}$
- It is referred to as forward difference

If $N E$ was chosen:

Increment \boldsymbol{M} by one in both \boldsymbol{x} and \boldsymbol{y} directions:

- $d_{\text {new }}=f\left(x_{P}+2, y_{P}+1.5\right)$

$$
=a\left(x_{P}+2\right)+b\left(y_{P}+1.5\right)+c
$$

- $\Delta \mathrm{NE}=d_{\text {new }}-d_{\text {old }}$

$$
d_{\text {new }}=d_{\text {old }}+a+b \rightarrow \Delta \mathrm{NE}=a+b=d y-d x
$$

- Thus, incrementally,

$$
d_{\text {new }}=d_{\text {old }}+\Delta \mathrm{NE}=d_{\text {old }}+d y-d x
$$

Summary (1/2)

- At each step, algorithm chooses between 2 pixels based on sign of decision variable calculated in previous iteration.
- It then updates decision variable by adding either $\Delta \mathrm{E}$ or $\Delta \mathrm{NE}$ to old value depending on choice of pixel. Simple additions only!
- First pixel is first endpoint (x_{0}, y_{0}), so we can directly calculate initial value of d for choosing between E and NE.

Summary (2/2)

- First midpoint for first $d=d_{\text {start }}$ is at $\left(x_{0}+1, y_{0}+.5\right)$
- $\mathrm{f}\left(x_{0}+1, y_{0}+.5\right)$

$$
\begin{aligned}
& =a\left(x_{0}+1\right)+b\left(y_{0}+.5\right)+c \\
& =a x_{0}+b y_{0}+a+\frac{b}{2}+\mathrm{c} \\
& =\mathrm{f}\left(x_{0}, y_{0}\right)+a+\frac{b}{2}
\end{aligned}
$$

- But $\left(x_{0}, y_{0}\right)$ is point on line, so $\mathrm{f}\left(x_{0}, y_{0}\right)=0$
- Therefore, $d_{\text {start }}=a+\frac{b}{2}=d y-\frac{d x}{2}$
- use $d_{\text {start }}$ to choose second pixel, etc.
- To eliminate fraction in $d_{\text {start }}$:
- redefine f by multiplying it by $2 ; f(x, y)=2(a x+b y+c)$
- This multiplies each constant and decision variable by 2 , but does not change sign
- Note: this is identical to "Bresenham's algorithm", though derived by different means. That won't be true for circle and ellipse scan conversion.

```
Example Code
void MidpointLine(int x0, int y0, int x1, int y1) {
    int dx = (x1 - x0), dy = (y1 - y0);
    int d = 2 * dy - dx;
    int incrE = 2 * dy;
    int incrNE = 2 * (dy - dx);
    int x = x0, y = y0;
    WritePixel(x, y);
    while (x < x1) {
    if (d <= 0) d = d + incrE; // East Case
    else { d = d + incrNE; ++y; } // Northeast Case
    ++X;
    WritePixel(x, y);
    }
}
```


Scan Converting Circles

Version 1: really bad
For x from $-R$ to R :

$$
y=\sqrt{R^{2}-x^{2}} ;
$$

$$
\text { WritePixel(round }(x) \text {, round }(y)) \text {; }
$$

$(0,17)$

$(17,0)$
$(0,17)$

Version 3 - Use Symmetry

Symmetry:

- If $\left(x_{0}+a, y_{0}+b\right)$ is on circle centered at $\left(x_{0}, y_{0}\right)$:
- Then $\left(x_{0} \pm a, y_{0} \pm b\right)$ and $\left(x_{0} \pm b, y_{0} \pm a\right)$ are also on the circle
- Hence there is 8-way symmetry
- Reduce the problem to finding the pixels for $1 / 8$ of the circle.

Using the Symmetry

- Scan top right $1 / 8$ of circle of radius R
- Circle starts at $\left(x_{0}, y_{0}+R\right)$
- Let's use another incremental algorithm with decision variable evaluated at midpoint

The incremental algorithm - a sketch

```
x = x0, y = y0 + R; WritePixel(x, y);
for (x = x + 1; (x - x0) < (y - y0); x++) {
    if (decision_var < 0) {
        // move east
        update decision variable
    } else {
        // move south east
        update decision variable
        y--;
    }
    WritePixel(x, y);
}
```

Note: can replace all occurrences of x_{0}, y_{0} with 0 , shifting coordinates by ($-x_{0},-y_{0}$)

What we need for the Incremental Algorithm

- Decision variable
- negative if we move E, positive if we move SE (or vice versa).
- Follow line strategy: Use implicit equation of circle
- $f(x, y)=x^{2}+y^{2}-R^{2}=0$
- $f(x, y)$ is zero on circle, negative inside, positive outside
- If we are at pixel (x, y) examine $(x+1, y)$ and $(x+1, y-1)$
- Compute f at the midpoint.

The Decision Variable

- Evaluate $f(x, y)=x^{2}+y^{2}-R^{2}$ at the point:

$$
\left(x+1, y-\frac{1}{2}\right)
$$

- We are asking: "Is $f(M)=$

$$
f\left(x+1, y-\frac{1}{2}\right)=(x+1)^{2}+\left(y-\frac{1}{2}\right)^{2}-R^{2}
$$

positive or negative?" (it is zero on circle)

- If negative, midpoint inside circle, choose \mathbf{E}
- vertical distance to the circle is less at $(x+1, y)$ than at

$$
(x+1, y-1)
$$

- If positive, opposite is true, choose SE

The right decision variable?

- Decision based on vertical distance
- Ok for lines, since d and $d_{v e r t}$ are proportional
- For circles, not true:

$$
\begin{gathered}
d((x+1, y), \operatorname{Circ})=\sqrt{(x+1)^{2}+y^{2}}-R \\
d((x+1, y-1), \operatorname{Circ})=\sqrt{(x+1)^{2}+(y-1)^{2}}-R
\end{gathered}
$$

- Which d is closer to zero? (i.e., which value below is closest to R ?):

$$
\sqrt{(x+1)^{2}+y^{2}} \text { or } \sqrt{(x+1)^{2}+(y-1)^{2}}
$$

Alternate Phrasing (1/3)
, We could ask instead: "Is $(x+1)^{2}+y^{2}$ or $(x+1)^{2}+(y-1)^{2}$ closer to R^{2} ?"

- The two values in equation above differ by:
- $\left[(x+1)^{2}+y^{2}\right]-\left[(x+1)^{2}+(y-1)^{2}\right]=2 y-1$

Alternate Phrasing (2/3)

- The second value, which is always less, is closer if its difference from R^{2} is less than: $\frac{1}{2}(2 y-1)$

$$
\text { i.e., if } \quad R^{2}-\left[(x+1)^{2}+(y-1)^{2}\right]<\frac{1}{2}(2 y-1)
$$

then $\quad 0<y-\frac{1}{2}+(x+1)^{2}+(y-1)^{2}-\mathrm{R}^{2}$

$$
\begin{aligned}
& 0<(x+1)^{2}+y^{2}-2 y+1+y-\frac{1}{2}-R^{2} \\
& 0<(x+1)^{2}+y^{2}-y+\frac{1}{2}-R^{2} \\
& 0<(x+1)^{2}+\left(y-\frac{1}{2}\right)^{2}+\frac{1}{4}-R^{2}
\end{aligned}
$$

Alternate Phrasing (3/3)

- The radial distance decision is whether

$$
d_{1}=(x+1)^{2}+\left(y-\frac{1}{2}\right)^{2}+\frac{1}{4}-R^{2}
$$

is positive or negative.

- The vertical distance decision is whether

$$
d_{2}=(x+1)^{2}+\left(y-\frac{1}{2}\right)^{2}-R^{2}
$$

is positive or negative; d_{1} and d_{2} are $1 / 4$ apart.

- The integer d_{1} is positive only if $d_{2}+1 / 4$ is positive (except special case where $d_{2}=0$: remember you're using integers).

Incremental Computation Revisited (1/2)

- How can we compute the value of

$$
f(x, y)=(x+1)^{2}+\left(y-\frac{1}{2}\right)^{2}-R^{2}
$$

at successive points? (vertical distance approach)

- Answer:
- Note that $f(x+1, y)-f(x, y)$

$$
=\Delta_{E}(x, y)=2 x+3
$$

- and that $f(x+1, y-1)-f(x, y)$

$$
=\Delta_{S E}(x, y)=2 x-2 y+5
$$

Incremental Computation (2/2)

- If we move E, update $d=\mathrm{f}(M)$ by adding $2 x+3$
- If we move SE, update d by adding $2 x-2 y+5$
- Forward differences of a $1^{\text {st }}$ degree polynomial are constants and those of a $2^{\text {nd }}$ degree polynomial are $1^{\text {st }}$ degree polynomials
- this "first order forward difference," like a partial derivative, is one degree lower

Second Differences (1/2)

- The function $\Delta_{\mathrm{E}}(x, y)=2 x+3$ is linear, hence amenable to incremental computation:

$$
\begin{gathered}
\Delta_{\mathrm{E}}(x+1, y)-\Delta_{\mathrm{E}}(x, y)=2 \\
\Delta_{\mathrm{E}}(x+1, y-1)-\Delta_{\mathrm{E}}(x, y)=2
\end{gathered}
$$

- Similarly

$$
\begin{gathered}
\Delta_{\mathrm{SE}}(x+1, y)-\Delta_{\mathrm{SE}}(x, y)=2 \\
\Delta_{\mathrm{SE}}(x+1, y-1)-\Delta_{\mathrm{SE}}(x, y)=4
\end{gathered}
$$

Second Differences (2/2)

- For any step, can compute new $\Delta_{\mathrm{E}}(x, y)$ from old $\Delta_{\mathrm{E}}(x, y)$ by adding appropriate second constant increment - update delta terms as we move. This is also true of $\Delta_{\mathrm{SE}}(x, y)$.
- Having drawn pixel (a, b), decide location of new pixel at $(a+1, b)$ or ($a+1, b-1$), using previously computed $\Delta(a, b)$
- Having drawn new pixel, must update $\Delta(a, b)$ for next iteration; need to find either $\Delta(a+1, b)$ or $\Delta(a+1, b-1)$ depending on pixel choice
- Must add $\Delta_{E}(a, b)$ or $\Delta_{S E}(a, b)$ to $\Delta(a, b)$
- So we...
- Look at d to decide which to draw next, update x and y
- Update d using $\Delta_{E}(a, b)$ or $\Delta_{S E}(a, b)$
- Update each of $\Delta_{E}(a, b)$ and $\Delta_{S E}(a, b)$ for future use
- Draw pixel

```
Midpoint Eighth Circle Algorithm
MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */
    int x = 0, y = R;
    int deltaE = 2*x + 3;
    int deltaSE = 2* (x - y) + 5;
    float decision = (x + 1) * (x + 1) + (y - 0.5) * (y - 0.5) - R*R;
    WritePixel(x, y);
    while ( y > x ) {
        if (decision > 0) { // Move East
                x++; WritePixel(x, y);
            decision += deltaE;
            deltaE += 2; deltaSE += 2; // Update delta
        } else { // Move SouthEast
            y--; x++; WritePixel(x, y);
            decision += deltaSE;
            deltaE += 2; deltaSE += 4; // Update delta
    }
}
}
```


Analysis

- Uses floats!
- 1 test, 3 or 4 additions per pixel
- Initialization can be improved
- Multiply everything by 4: No Floats!
- Makes the components even, but sign of decision variable remains same

Questions

- Are we getting all pixels whose distance from the circle is less than $1 / 2$?
- Why is $\boldsymbol{y} \boldsymbol{>} \boldsymbol{x}$ the right criterion?
- What if it were an ellipse?

