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Line Drawing 

 Draw a line on a raster screen between two points 

 Why is this a difficult problem? 

 What is “drawing” on a raster display? 

 What is a “line” in raster world? 

 Efficiency and appearance are both important 

Problem Statement 

 Given two points P and Q in XY plane, both with integer coordinates, 
determine which pixels on raster screen should be on in order to draw a 
unit-width line segment starting at P and ending at Q 

 

Scan Converting Lines 
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 Final step of rasterisation (process of taking geometric shapes and 
converting them into an array of pixels stored in the framebuffer to be 
displayed) 

 Takes place after clipping occurs 

 All graphics packages do this at the end of the rendering pipeline 

 Takes triangles and maps them to pixels on the screen 

 Also takes into account other properties like lighting and shading, but 
we’ll focus first on algorithms for line scan conversion 

What is Scan Conversion? 
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Special cases: 
 Horizontal Line: 

 Draw pixel P and increment x coordinate value by 1 to get next pixel. 

 Vertical Line: 

 Draw pixel P and increment y coordinate value by 1 to get next pixel. 

 Diagonal Line: 

 Draw pixel P and increment both x and y coordinate by 1 to get next pixel. 

 What should we do in general case? 

 Increment x coordinate by 1 and choose point closest to line. 

 But how do we measure “closest”? 

 

Finding the next pixel: 
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 Why can we use vertical distance as 
a measure of which point is closer? 

 … because vertical distance is 
proportional to actual distance 

 Similar triangles show that true 
distances to line (in blue) are 
directly proportional to vertical 
distances to line (in black) for each 
point 

 Therefore, point with smaller 
vertical distance to line is closest to 
line 

Vertical Distance 

(𝑥1, 𝑦1) 

(𝑥2, 𝑦2) 
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Basic Algorithm: 
 Find equation of line that connects two points P and Q 

 Starting with leftmost point , increment 𝑥𝑖  by 1 to calculate 𝑦𝑖  = 𝑚 ∗ 𝑥𝑖 + B where 
𝑚 = slope, B = y intercept 

 Draw pixel at (𝑥𝑖, Round(𝑦𝑖)) where  Round (𝑦𝑖) = .5 + 𝑦𝑖  

Incremental Algorithm: 

 Each iteration requires a floating-point multiplication   
 Modify algorithm to use deltas 

 (𝑦𝑖+1 − 𝑦𝑖) = 𝑚 ∗ (𝑥𝑖+1 − 𝑥𝑖) 

 𝑦𝑖+1 = 𝑦𝑖 + 𝑚 ∗ (𝑥𝑖+1 − 𝑥𝑖) 

 If  𝑥 = 𝑥𝑖+1 − 𝑥𝑖 = 1, then 𝑦𝑖+1 = 𝑦𝑖 + 𝑚 

 At each step, we make incremental calculations based on preceding step to 
find next y value 

 

 

 

Strategy 1 – Incremental Algorithm (1/3) 
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Strategy 1 – Incremental Algorithm (2/3) 
 

 

(𝑥𝑖 + 1, 𝑅𝑜𝑢𝑛𝑑 𝑦𝑖 + 𝑚 ) 

(𝑥𝑖 , 𝑦𝑖) 

(𝑥𝑖 , 𝑅𝑜𝑢𝑛𝑑 𝑦𝑖 ) 

(𝑥𝑖 + 1, 𝑦𝑖 + 𝑚) 
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Sample Code and Problems (3/3) 

void Line(int x0, int y0, int x1, int y1) { 

    int   x, y; 

    float dy = y1 – y0; 

    float dx = x1 – x0; 

    float m  = dy / dx; 

 

    y = y0; 

    for (x = x0; x < x1; ++x) { 

 WritePixel( x, Round(y) ); 

 y = y + m; 

   } 

} 

Rounding takes time 

Since slope is fractional, need special 
case for vertical lines (dx = 0) 
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 Assume that line’s slope is shallow and positive (0 < slope < 1);  
other slopes can be handled by suitable reflections about 
principle axes 

 Call lower left endpoint (𝑥0, 𝑦0) and upper right endpoint (𝑥1, 𝑦1) 

 Assume that we have just selected pixel 𝑃 at (𝑥𝑃 , 𝑦𝑃) 

 Next, we must choose between pixel to right (E pixel), or one 
right and one up (NE pixel) 

 Let Q be intersection point of line being scan-converted and 
vertical line 𝑥 = 𝑥𝑃 +1 

Strategy 2 – Midpoint Line Algorithm (1/3) 
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Strategy 2 – Midpoint Line Algorithm (2/3) 

Previous pixel 

E pixel 

NE pixel 

Midpoint M 
Q 

𝑃 = (𝑥𝑃, 𝑦𝑃) 

𝑥 = 𝑥𝑃 + 1 (dashed) 
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 Line passes between E and NE 

 Point that is closer to intersection 
point 𝑄 must be chosen 

 Observe on which side of line 
midpoint 𝑀 lies: 
 E is closer to line if midpoint 𝑀 lies 

above line, i.e., line crosses bottom 
half 

 NE is closer to line if midpoint 𝑀 lies 
below line, i.e., line crosses top half 

 Error (vertical distance between 
chosen pixel and actual line) is 
always ≤ .5 

 

Strategy 2- Midpoint Line Algorithm (3/3) 

For line shown, algorithm chooses 
NE as next pixel. 

Now, need to find a way to calculate 
on which side of line midpoint lies 

E pixel 

NE pixel 

𝑀 

𝑄 
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 Line equation as function: 𝑓 𝑥 = 𝑦 = 𝑚𝑥 + 𝐵 =
𝑑𝑦

𝑑𝑥
𝑥 + 𝐵 

 Line equation as implicit function: 𝑓 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 
 Avoids infinite slopes, provides symmetry between x and y 

 So from above,  
𝑦 ∙ 𝑑𝑥 = 𝑑𝑦 ∙ 𝑥 + 𝐵 ∙ 𝑑𝑥 

𝑑𝑦 ∙ 𝑥 − 𝑦 ∙ 𝑑𝑥 + 𝐵 ∙ 𝑑𝑥 = 0 
∴ 𝑎 = 𝑑𝑦, 𝑏 = −𝑑𝑥, 𝑐 = 𝐵 ∙ 𝑑𝑥 

 Properties (proof by case analysis): 
 𝑓 𝑥𝑚, 𝑦𝑚 = 0 when any point 𝑚 is on line 
 𝑓 𝑥𝑚, 𝑦𝑚 < 0 when any point 𝑚 is above line 

 𝑓 𝑥𝑚, 𝑦𝑚 > 0 when any point 𝑚 is below line 

 Our decision will be based on value of function at midpoint 𝑀 at (𝑥𝑃 + 1, 𝑦𝑃 + .5) 

 
 
 

 

General Line Equation 
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Decision Variable 𝑑 : 

 We only need sign of f(𝑥𝑃 + 1, 𝑦𝑃 + .5) to see where the line lies, and then 
pick nearest pixel. 

 𝑑 = f(𝑥𝑃 + 1, 𝑦𝑃 + .5)  

 if 𝑑 > 0 choose pixel NE 

 if 𝑑 < 0 choose pixel E 

 if 𝑑 = 0 choose either one consistently 

How do we incrementally update 𝑑? 

 On basis of picking E or NE, figure out location of 𝑀 for the next pixel, and 
corresponding value 𝑑 for next grid line. 

 We can derive 𝑑 for the next pixel based on our current decision. 

 

 

Decision Variable 
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Increment M by one in x direction: 

 𝑑𝑜𝑙𝑑   = 𝑎 𝑥𝑃 + 1 + 𝑏 𝑦𝑃 + .5 + 𝑐 

 𝑑𝑛𝑒𝑤 = 𝑓(𝑥𝑃 + 2, 𝑦𝑃 + .5) 

            = 𝑎 𝑥𝑃 + 2 + 𝑏 𝑦𝑃 + .5 + 𝑐 

 𝑑𝑛𝑒𝑤 − 𝑑𝑜𝑙𝑑  is the incremental difference E 
 𝑑𝑛𝑒𝑤 =  𝑑𝑜𝑙𝑑 + 𝑎 → E = 𝑎 = 𝑑𝑦 (2 slides back) 

 We can compute value of decision variable at next step incrementally 
without computing F(M) directly 
 𝑑𝑛𝑒𝑤 =  𝑑𝑜𝑙𝑑 + E = 𝑑𝑜𝑙𝑑 + 𝑑𝑦 

 E can be thought of as correction or update factor to take 𝑑𝑜𝑙𝑑 to 𝑑𝑛𝑒𝑤 

 It is referred to as forward difference 

 

Incrementing Decision Variable if E was chosen: 
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Increment M by one in both x and y directions: 

 𝑑𝑛𝑒𝑤 = 𝑓 𝑥𝑃 + 2, 𝑦𝑃 + 1.5  

                = 𝑎 𝑥𝑃 + 2 + 𝑏 𝑦𝑃 + 1.5 + 𝑐 

 NE = 𝑑𝑛𝑒𝑤 − 𝑑𝑜𝑙𝑑  

 𝑑𝑛𝑒𝑤 =  𝑑𝑜𝑙𝑑 + 𝑎 + 𝑏 → NE = 𝑎 + 𝑏 = 𝑑𝑦 − 𝑑𝑥 

 Thus, incrementally, 

 𝑑𝑛𝑒𝑤 =  𝑑𝑜𝑙𝑑 + NE = 𝑑𝑜𝑙𝑑 + 𝑑𝑦 − 𝑑𝑥 

If NE was chosen: 
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 At each step, algorithm chooses between 2 pixels based on 
sign of decision variable calculated in previous iteration. 

 It then updates decision variable by adding either E or 
NE to old value depending on choice of pixel. Simple 
additions only! 

 First pixel is first endpoint (𝑥0, 𝑦0), so we can directly 
calculate initial value of d for choosing between E and NE. 

Summary (1/2) 

16  



 First midpoint for first 𝑑 =  𝑑𝑠𝑡𝑎𝑟𝑡  is at (𝑥0 + 1, 𝑦0 + .5) 

 f (𝑥0 + 1, 𝑦0 + .5)   

            = 𝑎 𝑥0 + 1 + 𝑏 𝑦0 + .5 + 𝑐 

            = 𝑎𝑥0 + 𝑏𝑦0 + 𝑎 +
𝑏

2
+ c 

            = f 𝑥0, 𝑦0 + 𝑎 +
𝑏

2
 

 But 𝑥0, 𝑦0  is point on line, so f 𝑥0, 𝑦0 = 0 

 Therefore, 𝑑𝑠𝑡𝑎𝑟𝑡 = 𝑎 +
𝑏

2
= 𝑑𝑦 −

𝑑𝑥

2
 

 use 𝑑𝑠𝑡𝑎𝑟𝑡to choose second pixel, etc. 

 To eliminate fraction in 𝑑𝑠𝑡𝑎𝑟𝑡:  
 redefine f by multiplying it by 2; 𝑓 𝑥, 𝑦 = 2 𝑎𝑥 + 𝑏𝑦 + 𝑐  

 This multiplies each constant and decision variable by 2, but does not change sign 

 Note:  this is identical to “Bresenham’s algorithm”, though derived by different means.   
That won’t be true for circle and ellipse scan conversion. 

 

Summary (2/2) 
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void MidpointLine(int x0, int y0, int x1, int y1) { 
    int dx = (x1 - x0), dy = (y1 - y0); 
    int d = 2 * dy - dx; 
    int incrE = 2 * dy; 
    int incrNE = 2 * (dy - dx); 
    int x = x0, y = y0; 
    WritePixel(x, y); 
 
    while (x < x1) { 
        if (d <= 0) d = d + incrE;    // East Case 
        else { d = d + incrNE; ++y; } // Northeast Case 
        ++x; 
        WritePixel(x, y); 
    }   
} 

Example Code 
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Version 1:  really bad 
For 𝑥 from −𝑅 𝑡𝑜 𝑅: 

 𝑦 = 𝑅2  − 𝑥2; 

 WritePixel(round(𝑥), round(𝑦)); 

 WritePixel(round(𝑥), round(−𝑦)); 

Version 2:  slightly less bad 
For 𝑥 from 0 to 360: 

 WritePixel(round(𝑅 cos (𝑥)), round(𝑅 sin (𝑥))); 

 

Scan Converting Circles 

(17, 0) 

(0, 17) 

(17, 0) 

(0, 17) 
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Version 3 — Use Symmetry 

R 

(x0 + a, y0 + b) 

(x-x0)
2 + (y-y0)

2 = R2 

(x0, y0) 

Symmetry: 

 If 𝑥0 + 𝑎, 𝑦0 + 𝑏  is on circle centered at 
𝑥0, 𝑦0 : 

 Then 𝑥0 ± 𝑎, 𝑦0 ± 𝑏  and 𝑥0 ± 𝑏, 𝑦0 ± 𝑎  
are also on the circle 

 Hence there is 8-way symmetry 

 Reduce the problem to finding the pixels 
for 1/8 of the circle. 

 

 

20  



 Scan top right 1/8 of circle of radius 𝑅 

 Circle starts at 𝑥0, 𝑦0 + 𝑅  

 Let’s use another incremental 
algorithm with decision variable 
evaluated at midpoint 

 

Using the Symmetry 

(x0, y0) 
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x = x0, y = y0 + R; WritePixel(x, y); 
 
for (x = x + 1; (x – x0) < (y – y0); x++) { 
 if (decision_var < 0) { 
  // move east 
  update decision variable 
 } else { 
  // move south east 
  update decision variable 
  y--; 
 } 
 
 WritePixel(x, y); 
} 
 

Note: can replace all occurrences of 𝑥0, 𝑦0with 0, shifting 
coordinates by −𝑥0, −𝑦0   

The incremental algorithm – a sketch 
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 Decision variable 

 negative if we move E, positive if we move SE (or vice versa). 

 Follow line strategy: Use implicit equation of circle 

 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 𝑅2 = 0 

 𝑓 𝑥, 𝑦  is zero on circle, negative inside, positive outside 

 If we are at pixel 𝑥, 𝑦  examine 𝑥 + 1, 𝑦  and 𝑥 + 1, 𝑦 − 1  

 Compute f at the midpoint. 

 

What we need for the Incremental Algorithm 
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 Evaluate 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 𝑅2 at the point: 

𝑥 + 1, 𝑦 −
1

2
 

 We are asking: “Is 𝑓 𝑀  = 

𝑓 𝑥 + 1, 𝑦 −
1

2
= (𝑥 + 1)2+(𝑦 −

1

2
)2−𝑅2 

 positive or negative?” (it is zero on circle) 

 

The Decision Variable 

 If negative, midpoint inside circle, choose E 
 vertical distance to the circle is less at  (𝑥 + 1, 𝑦) than at 

𝑥 + 1, 𝑦 − 1  

 If positive, opposite is true, choose SE 
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 Decision based on vertical distance 

 Ok for lines, since d and dvert are proportional 

 For circles, not true: 

 

𝑑 𝑥 + 1, 𝑦 , 𝐶𝑖𝑟𝑐 = 𝑥 + 1 2 + 𝑦2 − 𝑅 

𝑑 𝑥 + 1, 𝑦 − 1 , 𝐶𝑖𝑟𝑐 = 𝑥 + 1 2 + (𝑦 − 1)2− 𝑅 

 

 Which d is closer to zero? (i.e., which value below is closest to R?): 
 

𝑥 + 1 2 + 𝑦2 or 𝑥 + 1 2 + (𝑦 − 1)2 

 

 

The right decision variable? 
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 We could ask instead: “Is 𝑥 + 1 2 + 𝑦2 or 𝑥 + 1 2 + (𝑦 − 1)2 closer to 
𝑅2?” 

 The two values in equation above differ by:  

 𝑥 + 1 2 + 𝑦2 − 𝑥 + 1 2 + 𝑦 − 1 2 = 2𝑦 − 1 

Alternate Phrasing (1/3) 
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 The second value, which is always less,  is closer if its difference from R2 is less 
than: 

1

2
(2𝑦 − 1) 

 

 i.e., if       𝑅2 − 𝑥 + 1 2 + 𝑦 − 1 2 <
1

2
(2𝑦 − 1) 

 

 then      0 < 𝑦 −
1

2
+ 𝑥 + 1 2 + 𝑦 − 1 2 − R2 

                0 < 𝑥 + 1 2 + 𝑦2 − 2𝑦 + 1 + 𝑦 −
1

2
− 𝑅2 

                    0 < 𝑥 + 1 2 + 𝑦2 − 𝑦 +
1

2
− 𝑅2 

                    0 < 𝑥 + 1 2 + (𝑦 −
1

2
)2+

1

4
− 𝑅2 

 

 

Alternate Phrasing (2/3) 
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 The radial distance decision is whether 

𝑑1 = 𝑥 + 1 2 + 𝑦 −
1

2

2

+
1

4
− 𝑅2 

 is positive or negative. 

 The vertical distance decision is whether 

𝑑2 = 𝑥 + 1 2 + 𝑦 −
1

2

2
− 𝑅2  

 is positive or negative; 𝑑1and 𝑑2 are ¼ apart. 

 The integer 𝑑1 is positive only if 𝑑2 +  ¼ is  positive (except special case 
where 𝑑2 = 0: remember you’re using integers). 

 

 

 

Alternate Phrasing (3/3) 
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 How can we compute the value of 

   𝑓 𝑥, 𝑦 = 𝑥 + 1 2 + 𝑦 −
1

2

2
− 𝑅2 

   at successive points? (vertical distance approach) 

 Answer:  
 Note that 𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥, 𝑦   

                           = Δ𝐸 𝑥, 𝑦 = 2𝑥 + 3 

 and that 𝑓 𝑥 + 1, 𝑦 − 1 − 𝑓(𝑥, 𝑦) 

                         = Δ𝑆𝐸 𝑥, 𝑦 = 2𝑥 − 2𝑦 + 5   

 

Incremental Computation Revisited (1/2) 
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 If we move E, update d = f(M) by 
adding 2𝑥 +  3 

 If we move SE, update d by adding  
2𝑥 − 2𝑦 + 5 

 Forward differences of a 1st degree 
polynomial are constants and those 
of a 2nd degree polynomial are 1st 
degree polynomials  

 this “first order forward difference,” 
like a partial derivative, is one 
degree lower   

 

Incremental Computation (2/2) 
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 The function ΔE 𝑥, 𝑦 = 2𝑥 + 3 is linear, hence amenable to incremental 
computation: 

ΔE 𝑥 + 1, 𝑦 − ΔE 𝑥, 𝑦 = 2 
ΔE 𝑥 + 1, 𝑦 − 1 − ΔE 𝑥, 𝑦 = 2 

 

 Similarly 
ΔSE 𝑥 + 1, 𝑦 − ΔSE 𝑥, 𝑦 = 2 

ΔSE 𝑥 + 1, 𝑦 − 1 − ΔSE 𝑥, 𝑦 = 4 

 

Second Differences (1/2) 
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 For any step, can compute new ΔE 𝑥, 𝑦  from old ΔE 𝑥, 𝑦  by adding 
appropriate second constant increment – update delta terms as we move. This 
is also true of ΔSE 𝑥, 𝑦 . 

 Having drawn pixel 𝑎, 𝑏 , decide location of new pixel at 𝑎 + 1, 𝑏  or 

(𝑎 +  1, 𝑏 –  1), using previously computed Δ(𝑎, 𝑏) 

 Having drawn new pixel, must update Δ(𝑎, 𝑏) for  next iteration; need to find 

either Δ(𝑎 +  1, 𝑏) 𝑜𝑟 Δ(𝑎 +  1, 𝑏 –  1) depending on pixel choice 

 Must add Δ𝐸(𝑎, 𝑏) or Δ𝑆𝐸(𝑎, 𝑏) to Δ(𝑎, 𝑏) 

 So we… 
 Look at 𝑑 to decide which to draw next, update 𝑥 and 𝑦 

 Update d using Δ𝐸(𝑎, 𝑏) 𝑜𝑟 Δ𝑆𝐸(𝑎, 𝑏)  

 Update each of Δ𝐸(𝑎, 𝑏) 𝑎𝑛𝑑 Δ𝑆𝐸(𝑎, 𝑏) for future use 

 Draw pixel 

Second Differences (2/2) 
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MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */  
    int x = 0, y = R; 
    int deltaE   = 2 * x + 3; 
    int deltaSE  = 2 * (x - y) + 5; 
    float decision = (x + 1) * (x + 1) + (y - 0.5) * (y - 0.5) – R*R; 
    WritePixel(x, y); 
 
    while ( y > x ) { 
        if (decision > 0) { // Move East 
            x++; WritePixel(x, y); 
            decision += deltaE; 
            deltaE += 2; deltaSE += 2; // Update delta 
        } else { // Move SouthEast  
            y--; x++; WritePixel(x, y); 
            decision += deltaSE; 
            deltaE += 2; deltaSE += 4; // Update delta 
        } 
    } 
} 

Midpoint Eighth Circle Algorithm 
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 Uses floats! 

 1 test, 3 or 4 additions per pixel 

 Initialization can be improved 

 Multiply everything by 4: No Floats! 

 Makes the components even, but sign of decision 
variable remains same 

Questions 

 Are we getting all pixels whose distance from the 
circle is less than ½? 

 Why is y > x the right criterion? 

 What if it were an ellipse? 

 

 

Analysis 
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