#### INTRODUCTION TO COMPUTER GRAPHICS



# Scan Conversion

Andries van Dam

## Scan Converting Lines

#### Line Drawing

- Draw a line on a raster screen between two points
- Why is this a difficult problem?
  - What is "drawing" on a raster display?
  - What is a "line" in raster world?
  - Efficiency and appearance are both important

#### **Problem Statement**

Given two points P and Q in XY plane, both with integer coordinates, determine which pixels on raster screen should be on in order to draw a unit-width line segment starting at P and ending at Q

### What is Scan Conversion?

- Final step of rasterisation (process of taking geometric shapes and converting them into an array of pixels stored in the framebuffer to be displayed)
- Takes place after clipping occurs
- All graphics packages do this at the end of the rendering pipeline
- Takes triangles and maps them to pixels on the screen
- Also takes into account other properties like lighting and shading, but we'll focus first on algorithms for line scan conversion

# Finding the next pixel:

### Special cases:

#### Horizontal Line:

▶ Draw pixel *P* and increment *x* coordinate value by 1 to get next pixel.

#### Vertical Line:

▶ Draw pixel *P* and increment *y* coordinate value by 1 to get next pixel.

#### Diagonal Line:

- Draw pixel P and increment both x and y coordinate by 1 to get next pixel.
- What should we do in general case?
  - ▶ Increment x coordinate by 1 and choose point closest to line.
  - But how do we measure "closest"?

### **Vertical Distance**

- Why can we use vertical distance as a measure of which point is closer?
  - ... because vertical distance is proportional to actual distance
- Similar triangles show that true distances to line (in blue) are directly proportional to vertical distances to line (in black) for each point
- Therefore, point with smaller vertical distance to line is closest to line



# Strategy 1 – Incremental Algorithm (1/3)

#### Basic Algorithm:

- Find equation of line that connects two points P and Q
- Starting with leftmost point , increment  $x_i$  by 1 to calculate  $y_i = m * x_i + B$  where m = slope, B = y intercept
- ▶ Draw pixel at  $(x_i, \text{Round}(y_i))$  where Round  $(y_i) = [.5 + y_i]$

#### Incremental Algorithm:

- Each iteration requires a floating-point multiplication
  - Modify algorithm to use deltas
  - $(y_{i+1} y_i) = m * (x_{i+1} x_i)$
  - $y_{i+1} = y_i + m * (x_{i+1} x_i)$
  - If  $\Delta x = x_{i+1} x_i = 1$ , then  $y_{i+1} = y_i + m$
- At each step, we make incremental calculations based on preceding step to find next y value

# Strategy 1 – Incremental Algorithm (2/3)



# Sample Code and Problems (3/3)

```
void Line(int x0, int y0, int x1, int y1) {
    int x, y;
    float dy = y1 - y0;
                                      Since slope is fractional, need special
    float dx = x1 - x0;
                                      case for vertical lines (dx = 0)
    float m = dy / dx;
    y = y0;
                                                   Rounding takes time
    for (x = x0; x < x1; ++x) {
        WritePixel( x, Round(y) );
        y = y + m;
```

# Strategy 2 – Midpoint Line Algorithm (1/3)

- Assume that line's slope is shallow and positive (0 < slope < 1); other slopes can be handled by suitable reflections about principle axes
- Call lower left endpoint  $(x_0, y_0)$  and upper right endpoint  $(x_1, y_1)$
- Assume that we have just selected pixel P at  $(x_P, y_P)$
- Next, we must choose between pixel to right (E pixel), or one right and one up (NE pixel)
- Let *Q* be intersection point of line being scan-converted and vertical line  $x = x_P + 1$

# Strategy 2 – Midpoint Line Algorithm (2/3)



# Strategy 2- Midpoint Line Algorithm (3/3)

- Line passes between E and NE
- Point that is closer to intersection point Q must be chosen
- Observe on which side of line midpoint *M* lies:
  - E is closer to line if midpoint *M* lies above line, i.e., line crosses bottom half
  - NE is closer to line if midpoint *M* lies below line, i.e., line crosses top half
- Error (vertical distance between chosen pixel and actual line) is always ≤ .5



For line shown, algorithm chooses NE as next pixel.

Now, need to find a way to calculate on which side of line midpoint lies

## General Line Equation

- Line equation as function:  $f(x) = y = mx + B = \frac{dy}{dx}x + B$
- Line equation as implicit function: f(x, y) = ax + by + c = 0
  - Avoids infinite slopes, provides symmetry between *x* and *y*
- So from above,

$$y \cdot dx = dy \cdot x + B \cdot dx$$
$$dy \cdot x - y \cdot dx + B \cdot dx = 0$$
$$\therefore a = dy, b = -dx, c = B \cdot dx$$

- Properties (proof by case analysis):
  - $f(x_m, y_m) = 0$  when any point m is on line
  - $f(x_m, y_m) < 0$  when any point m is above line
  - $f(x_m, y_m) > 0$  when any point m is below line
  - Our decision will be based on value of function at midpoint M at  $(x_P + 1, y_P + .5)$

### **Decision Variable**

#### Decision Variable d:

- We only need sign of  $f(x_P + 1, y_P + .5)$  to see where the line lies, and then pick nearest pixel.
- $d = f(x_P + 1, y_P + .5)$ 
  - if d > 0 choose pixel NE
  - if d < 0 choose pixel E
  - if d = 0 choose either one consistently

#### How do we incrementally update d?

- On basis of picking E or NE, figure out location of M for the next pixel, and corresponding value d for next grid line.
- $\blacktriangleright$  We can derive d for the next pixel based on our current decision.

### Incrementing Decision Variable if E was chosen:

#### Increment *M* by one in *x* direction:

- $d_{old} = a(x_P + 1) + b(y_P + .5) + c$
- $d_{new} = f(x_P + 2, y_P + .5)$  $= a(x_P + 2) + b(y_P + .5) + c$
- $d_{new} d_{old}$  is the incremental difference  $\Delta E$ 
  - $d_{new} = d_{old} + a \rightarrow \Delta E = a = dy$  (2 slides back)
- We can compute value of decision variable at next step incrementally without computing F(M) directly
  - $b d_{new} = d_{old} + \Delta E = d_{old} + dy$
- lacktriangle  $\Delta E$  can be thought of as correction or update factor to take  $d_{old}$  to  $d_{new}$
- It is referred to as <u>forward difference</u>

### If NE was chosen:

#### Increment M by one in both x and y directions:

$$d_{new} = f(x_P + 2, y_P + 1.5)$$
$$= a(x_P + 2) + b(y_P + 1.5) + c$$

- $ightharpoonup \Delta NE = d_{new} d_{old}$ 
  - $d_{new} = d_{old} + a + b \rightarrow \Delta NE = a + b = dy dx$
- Thus, incrementally,

$$d_{new} = d_{old} + \Delta NE = d_{old} + dy - dx$$

# Summary (1/2)

- At each step, algorithm chooses between 2 pixels based on sign of decision variable calculated in previous iteration.
- It then updates decision variable by adding either  $\Delta E$  or  $\Delta NE$  to old value depending on choice of pixel. Simple additions only!
- First pixel is first endpoint  $(x_0, y_0)$ , so we can directly calculate initial value of d for choosing between E and NE.

## Summary (2/2)

- First midpoint for first  $d = d_{start}$  is at  $(x_0 + 1, y_0 + .5)$
- $f(x_0 + 1, y_0 + .5)$   $= a(x_0 + 1) + b(y_0 + .5) + c$   $= ax_0 + by_0 + a + \frac{b}{2} + c$   $= f(x_0, y_0) + a + \frac{b}{2}$
- But  $(x_0, y_0)$  is point on line, so  $f(x_0, y_0) = 0$
- Therefore,  $d_{start} = a + \frac{b}{2} = dy \frac{dx}{2}$ 
  - use  $d_{start}$  to choose second pixel, etc.
- To eliminate fraction in  $d_{start}$ :
  - redefine f by multiplying it by 2; f(x,y) = 2(ax + by + c)
  - This multiplies each constant and decision variable by 2, but does not change sign
- Note: this is identical to "Bresenham's algorithm", though derived by different means. That won't be true for circle and ellipse scan conversion.

## Example Code

```
void MidpointLine(int x0, int y0, int x1, int y1) {
    int dx = (x1 - x0), dy = (y1 - y0);
    int d = 2 * dy - dx;
    int incrE = 2 * dy;
    int incrNE = 2 * (dy - dx);
    int x = x0, y = y0;
   WritePixel(x, y);
   while (x < x1) {
        if (d <= ∅) d = d + incrE; // East Case
        else { d = d + incrNE; ++y; } // Northeast Case
        ++X;
        WritePixel(x, y);
```

# Scan Converting Circles

# Version 1: <u>really</u> bad

For x from -R to R:

$$y = \sqrt{R^2 - x^2};$$

WritePixel(round(x), round(y));

WritePixel(round(x), round(-y));

# Version 2: slightly less bad

For *x* from 0 to 360:

WritePixel(round( $R\cos(x)$ ), round( $R\sin(x)$ ));





# Version 3 — Use Symmetry

#### **Symmetry:**

- If  $(x_0 + a, y_0 + b)$  is on circle centered at  $(x_0, y_0)$ :
  - Then  $(x_0 \pm a, y_0 \pm b)$  and  $(x_0 \pm b, y_0 \pm a)$  are also on the circle
  - ▶ Hence there is 8-way symmetry
- Reduce the problem to finding the pixels for 1/8 of the circle.



# Using the Symmetry

- ▶ Scan top right 1/8 of circle of radius *R*
- Circle starts at  $(x_0, y_0 + R)$
- Let's use another incremental algorithm with decision variable evaluated at midpoint



# The incremental algorithm – a sketch

```
x = x0, y = y0 + R; WritePixel(x, y);
for (x = x + 1; (x - x0) < (y - y0); x++) {
     if (decision_var < 0) {</pre>
          // move east
          update decision variable
     } else {
          // move south east
          update decision variable
          y--;
     WritePixel(x, y);
```

Note: can replace all occurrences of  $x_0$ ,  $y_0$  with 0, shifting coordinates by  $(-x_0, -y_0)$ 



# What we need for the Incremental Algorithm

- Decision variable
  - negative if we move E, positive if we move SE (or vice versa).
- Follow line strategy: Use implicit equation of circle
  - $f(x,y) = x^2 + y^2 R^2 = 0$
  - f(x,y) is zero on circle, negative inside, positive outside
- If we are at pixel (x, y) examine (x + 1, y) and (x + 1, y 1)
- Compute *f* at the midpoint.

### The Decision Variable

Evaluate  $f(x, y) = x^2 + y^2 - R^2$  at the point:

$$\left(x+1,y-\frac{1}{2}\right)$$

• We are asking: "Is f(M) =

$$f\left(x+1,y-\frac{1}{2}\right) = (x+1)^2 + (y-\frac{1}{2})^2 - R^2$$



positive or negative?" (it is zero on circle)

- If negative, midpoint inside circle, choose E
  - *vertical* distance to the circle is less at (x + 1, y) than at (x + 1, y 1)
- If positive, opposite is true, choose SE

# The right decision variable?

- Decision based on vertical distance
- lacktriangle Ok for lines, since d and  $d_{vert}$  are proportional
- For circles, not true:

$$d((x+1,y),Circ) = \sqrt{(x+1)^2 + y^2} - R$$
  
$$d((x+1,y-1),Circ) = \sqrt{(x+1)^2 + (y-1)^2} - R$$

▶ Which *d* is closer to zero? (i.e., which value below is closest to *R*?):

$$\sqrt{(x+1)^2 + y^2}$$
 or  $\sqrt{(x+1)^2 + (y-1)^2}$ 

### Alternate Phrasing (1/3)

- We could ask instead: "Is  $(x + 1)^2 + y^2$  or  $(x + 1)^2 + (y 1)^2$  closer to  $R^2$ ?"
- The two values in equation above differ by:

$$[(x+1)^2 + y^2] - [(x+1)^2 + (y-1)^2] = 2y - 1$$



## Alternate Phrasing (2/3)

The second value, which is always less, is *closer* if its difference from  $R^2$  is less than:  $\frac{1}{2}(2y-1)$ 

i.e., if 
$$R^2 - [(x+1)^2 + (y-1)^2] < \frac{1}{2}(2y-1)$$
  
then  $0 < y - \frac{1}{2} + (x+1)^2 + (y-1)^2 - R^2$   
 $0 < (x+1)^2 + y^2 - 2y + 1 + y - \frac{1}{2} - R^2$   
 $0 < (x+1)^2 + y^2 - y + \frac{1}{2} - R^2$   
 $0 < (x+1)^2 + (y-\frac{1}{2})^2 + \frac{1}{4} - R^2$ 

## Alternate Phrasing (3/3)

▶ The *radial distance decision* is whether

$$d_1 = (x+1)^2 + \left(y - \frac{1}{2}\right)^2 + \frac{1}{4} - R^2$$

is positive or negative.

▶ The *vertical distance decision* is whether

$$d_2 = (x+1)^2 + \left(y - \frac{1}{2}\right)^2 - R^2$$

is positive or negative;  $d_1$  and  $d_2$  are  $\frac{1}{4}$  apart.

The integer  $d_1$  is positive only if  $d_2 + \frac{1}{4}$  is positive (except special case where  $d_2 = 0$ : remember you're using integers).

# Incremental Computation Revisited (1/2)

How can we compute the value of

$$f(x,y) = (x+1)^2 + \left(y - \frac{1}{2}\right)^2 - R^2$$

at successive points? (vertical distance approach)

- Answer:
  - Note that f(x + 1, y) f(x, y)

$$= \Delta_E(x, y) = 2x + 3$$

• and that f(x + 1, y - 1) - f(x, y)

$$= \Delta_{SE}(x,y) = 2x - 2y + 5$$

# Incremental Computation (2/2)

- If we move E, update d = f(M) by adding 2x + 3
- If we move SE, update d by adding 2x 2y + 5
- Forward differences of a 1<sup>st</sup> degree polynomial are constants and those of a 2<sup>nd</sup> degree polynomial are 1<sup>st</sup> degree polynomials
  - this "first order forward difference," like a partial derivative, is one degree lower



### Second Differences (1/2)

The function  $\Delta_{\rm E}(x,y)=2x+3$  is linear, hence amenable to incremental computation:

$$\Delta_{E}(x + 1, y) - \Delta_{E}(x, y) = 2$$
  
 $\Delta_{E}(x + 1, y - 1) - \Delta_{E}(x, y) = 2$ 

Similarly

$$\Delta_{SE}(x + 1, y) - \Delta_{SE}(x, y) = 2$$
  
 $\Delta_{SE}(x + 1, y - 1) - \Delta_{SE}(x, y) = 4$ 

# Second Differences (2/2)

- For any step, can compute new  $\Delta_{\rm E}(x,y)$  from old  $\Delta_{\rm E}(x,y)$  by adding appropriate second constant increment update delta terms as we move. This is also true of  $\Delta_{\rm SE}(x,y)$ .
- Having drawn pixel (a, b), decide location of new pixel at (a + 1, b) or (a + 1, b 1), using previously computed  $\Delta(a, b)$
- Having drawn new pixel, must update  $\Delta(a, b)$  for next iteration; need to find either  $\Delta(a + 1, b)$  or  $\Delta(a + 1, b 1)$  depending on pixel choice
- Must add  $\Delta_E(a,b)$  or  $\Delta_{SE}(a,b)$  to  $\Delta(a,b)$
- So we...
  - Look at d to decide which to draw next, update x and y
  - Update *d* using  $\Delta_E(a, b)$  or  $\Delta_{SE}(a, b)$
  - Update each of  $\Delta_E(a, b)$  and  $\Delta_{SE}(a, b)$  for future use
  - Draw pixel

# Midpoint Eighth Circle Algorithm

```
MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */
    int x = 0, y = R;
    int deltaE = 2 * x + 3;
    int deltaSE = 2 * (x - y) + 5;
   float decision = (x + 1) * (x + 1) + (y - 0.5) * (y - 0.5) - R*R;
   WritePixel(x, y);
   while (y > x) {
       if (decision > 0) { // Move East
           x++; WritePixel(x, y);
           decision += deltaE;
            deltaE += 2; deltaSE += 2; // Update delta
        } else { // Move SouthEast
           y--; x++; WritePixel(x, y);
           decision += deltaSE;
            deltaE += 2; deltaSE += 4; // Update delta
```

# **Analysis**

- Uses floats!
- ▶ 1 test, 3 or 4 additions per pixel
- Initialization can be improved
- Multiply everything by 4: No Floats!
  - Makes the components even, but sign of decision variable remains same

#### Questions

- Are we getting <u>all</u> pixels whose distance from the circle is less than ½?
- Why is y > x the right criterion?
- What if it were an ellipse?

