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 Objects in a scene are a collection of points… 

 

 

 

 

 

 These objects have location, orientation, size 

 Corresponds to transformations, Translation (𝑻), Rotation (𝑹), and  
Scaling (𝑺)  

 

How do we use Geometric Transformations? (1/2) 
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 A scene has a camera/view point from which the scene is viewed 

 The camera has some location and some orientation in 3-space … 

 

 

 

 

 

 

 These correspond to Translation and Rotation transformations 

 Need other types of viewing transformations as well - learn about them shortly 

How do we use Geometric Transformations? (2/2) 
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3D Coordinate geometry 

Vectors in 2 space and 3 space 

Dot product and cross product – definitions and uses 

Vector and matrix notation and algebra 

Identity Matrix 

Multiplicative associativity 

E.g.  A(BC) = (AB)C 

Matrix transpose and inverse – definition, use, and calculation 

Homogeneous coordinates (𝑥, 𝑦, 𝑧, 𝒘) 
 

You will need to understand these concepts! 

 

Some Linear Algebra Concepts... 
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 We represent vectors as bold-italic letters 
(𝒗) and scalars as just italicized letters (c) 

 Any vector in  plane can be defined as  
addition of two non-collinear basis vectors 
in the plane 

 Recall that a basis is a set of vectors with the 
following two properties: 

 The vectors are linearly independent 

 Any vector in the vector space can be generated by a 
linear combination of the basis vectors 

 Scalar constants can be used to adjust 
magnitude and direction of  resultant vector 

Linear Transformations (1/3) 

a 

b 

𝒗  =  a + b 
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 Definition of a linear function, f: 

 f 𝒗 + 𝒘 = f 𝒗 + f(𝒘) where  domain and co-domain of f are identical 

  function of a vector addition is equivalent to  addition of  function applied to each of  the 
vectors 

 f 𝑐𝒗 = 𝑐f 𝒗   

 function of a scalar multiplication  with a vector is  scalar multiplied by  function applied 
to  vector 

 Both of these properties must be satisfied in order for f to be a linear operator 

 

Linear Transformations (2/3) 
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 Graphical Use: transformations of 
points around the origin (leaves 
the origin invariant) 

 These include Scaling and Rotations 
(but not translation), 

 Translation is not a linear function 
(moves the origin) 

 Any linear transformation of a point 
will result in another point in the 
same coordinate system, transformed 
about the origin 

 

Linear Transformations (3/3) 
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 Linear Transformations can be represented as non-singular (invertible) matrices 

 Let’s start with 2D transformations: 

  𝑻 = 
𝑎 𝑏
𝑐 𝑑

      

 The matrix  𝑻 can also be written as: 

 

  
𝑻 𝑒1 𝑻 𝑒2

  
  , where 𝑻 𝑒1  = 

𝑎
𝑐

 , 𝑻 𝑒2  = 
𝑏
𝑑

  

 Where 𝑒1 and 𝑒2 are the standard unit basis vectors along the x and y vectors:  

 𝑒1 = 
1
0

, 𝑒2 = 
0
1

  

 Why is this important? This means we can compute the columns of a transformation matrix one 
by one by determining how our transformation effects each of the standard unit vectors.  Thus 𝑻 

“sends 𝑒1 to = 
𝑎
𝑐

 “ 

 Use this strategy to derive transformation matrices 

    

Linear Transformations as Matrices (1/2) 
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 A transformation of an arbitrary column vector 
𝑥
𝑦  has  form: 

 𝑻 
𝑥
𝑦  =  

𝑎 𝑏
𝑐 𝑑

 
𝑥
𝑦   

 

 Let’s substitute 
1
0

 for
𝑥
𝑦 :    𝑻

1
0

  = 
𝑎 𝑏
𝑐 𝑑

 
1
0

=  
𝑎
𝑐

 

 transformation applied to 
1
0

 is  1st column of  𝑻 

 

 Now substitute 
0
1

 for
𝑥
𝑦 :    𝑻

0
1

  = 
𝑎 𝑏
𝑐 𝑑

 
0
1

=  
𝑏
𝑑

 

 transformation applied to 
0
1

 is  2nd column of  𝑻 

Linear Transformations as Matrices (2/2) 
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 Scale 𝑥 by 3,  𝑦 by 2 (Sx = 3, Sy = 2) 

 𝒗 = 
𝑥
𝑦  (original vertex); 𝒗’ = 

𝑥′
𝑦′

 (new vertex) 

 𝒗’ =  𝑺
 
𝒗  

 Derive 𝑺 by determining how 𝑒1 and 𝑒2 
should be transformed 

 𝑒1 = 
1
0

  𝑠𝑥 * 𝑒1 = 
𝑠𝑥
0

 (Scale in  X by 𝑠𝑥) , the 

first column of 𝑺 

 𝑒2 = 
0
1

  𝑠𝑦 * 𝑒2 = 
0

𝑠𝑦
 (Scale in  Y by 𝑠𝑦), the 

second column of 𝑺 

 Thus we obtain 𝑺: 
𝑠𝑥 0
0 𝑠𝑦

     

 

Scaling in 2D (1/2) 

Side effect: House shifts 
position relative to origin 
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 𝑺 is a diagonal matrix  - can confirm our 
derivation by simply looking at 
properties of diagonal matrices: 

  𝑫𝒗 =
𝑎 0
0 𝑏

𝑥
𝑦 =  

𝑎𝑥
𝑏𝑦  = 𝒗’ 

 where 𝑫 is some diagonal matrix 

 𝑖𝑡ℎ  entry of 𝒗’ = (𝑖𝑡ℎ entry along 
diagonal of 𝑫 ∗  𝑖𝑡ℎ entry of 𝒗 ) 

 𝑺 multiplies each coordinate of a 𝒗 by 
scaling factors (𝑠𝑥, 𝑠𝑦) specified by the 

entries along the diagonal, as expected 

 𝑠𝑥 = 𝑎, 𝑠𝑦 = 𝑏 

 

Scaling in 2D (2/2) 

 Other properties of scaling: 

 does not preserve lengths in objects 

 does not preserve angles between parts 
of objects (except when scaling is 
uniform,𝑠𝑥 = 𝑠𝑦) 

 if not at origin, translates house relative 
to origin– often not desired… 
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 Rotate by 𝜃 about origin  
 𝒗’ = 𝑺

 
𝒗 where   

 𝒗 = 
𝑥
𝑦  (original vertex) 

 

 𝒗’= 
𝑥′
𝑦′

 (new vertex) 

 

 Derive 𝑹Ө by determining how 𝑒1 and 𝑒2 should be transformed 

 𝑒1 = 
1
0

 
cosӨ
sinӨ

  , first column of 𝑹Ө  

 𝑒2 = 
0
1

 
−sinӨ
cosӨ

 , second column of 𝑹Ө  

 

 Thus we obtain 𝑹Ө :  
cos 𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

  

 

 

Rotation in 2D (1/2) 
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 Let’s try matrix-vector multiplication    

 𝑹𝜃 ∗ 𝒗 =
cos 𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

 
𝑥
𝑦  = 

x cos Ө – y sin Ө 
x sin Ө + y cos Ө 

=
𝑥′
𝑦′

 = 𝒗’  

 𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃 

 𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃 

 Other properties of rotation: 
 preserves lengths in objects, and angles between parts of objects 
 rotation is rigid-body 
 for objects not at the origin, again a translation may be unwanted (i.e., this 

rotates about origin, not about house’s center of rotation) 
 

Rotation in 2D (2/2) 
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 Translation not a linear 
transformation (not centered about 
origin) 

 Can’t be represented as a 2x2 
invertible matrix … 

 Question: Is there another solution?  

 Answer: Yes, 𝒗′ = 𝒗 + 𝒕, where 

𝒕 =
𝑑𝑥
𝑑𝑦

 

 Addition for translation – this is 
inconsistent 

What about translation? 

 If we could treat all transformations 
in a consistent manner, i.e., with 
matrix representation, then could 
combine transformations by 
composing their matrices 

 Let’s try using a Matrix again 

 How? Homogeneous Coordinates: 
add an additional dimension, the w-
axis, and an extra coordinate, the w-
component 

 thus 2D -> 3D (effectively the 
hyperspace for embedding 2D space) 
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 Allows expression of all three 2D 
transformations as 3x3 matrices 

 We start with the point 𝑃2𝑑 on the  𝑥𝑦 
plane and apply a mapping to bring it to 
the 𝑤-plane in hyperspace 

 𝑃2𝑑 𝑥, 𝑦 → 𝑃ℎ 𝑤𝑥, 𝑤𝑦, 𝑤 , 𝑤 ≠ 0 

 The resulting (𝑥’, 𝑦’) coordinates in our 
new point 𝑃ℎ are different from the 
original (𝑥, 𝑦) , where 𝑥’ = 𝑤𝑥, 𝑦’ = 𝑤𝑦 

 𝑃ℎ 𝑥′, 𝑦′, 𝑤 ,  𝑤 ≠ 0 

 

Homogeneous Coordinates (1/3) 
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 Once we have this point we can apply a 
homogenized version of our 
transformation matrices (next slides) to it 
to get a new point in hyperspace 

 Finally,  want to obtain  resulting point in 
2D-space again so perform a reverse of  
previous mapping (divide all entries by 𝑤) 

 This converts our point in hyperspace to a 
corresponding point in 2D space 

 𝑃2𝑑 𝑥, 𝑦 = 𝑃2𝑑
𝑥′

𝑤
,

𝑦′

𝑤
 

 The vertex 𝒗 =  
𝑥
𝑦  is now represented 

as 𝒗 =  
𝑥
𝑦
1

 

 

Homogeneous Coordinates (2/3) 
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 Make transformations map points in hyperplane  to another point in 
hyperplane.  Transformations applied to a point in the hyperplane will always 
yield a result also in the same hyperplane (mathematical closure) 

 Transformation 𝑻 applied to 𝒗 =  
𝑥
𝑦
1

 maps to 𝒗′ =  
𝑥′
𝑦′
1

  

 How do we apply this to our transformation matrices? 

 For linear transformations, maintain 2x2 sub-matrix, expand the matrix as 
follows, where for 2D transformations, the upper left submatrix is the 
embedding of either the scale or the rotation matrix derived earlier: 



𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

 

 

Homogeneous Coordinates (3/3) 
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 Our translation matrix (𝑻) can now be represented by embedding the 
translation vector in the rightcolumn at the top as: 

                                
1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

 

 Try it - multiply it by our homogenized vertex 
𝑥
𝑦
1

 

 𝑻 𝒗 = 
1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

 
𝑥
𝑦
1

 = 
𝑥 + 𝑑𝑥
𝑦 + 𝑑𝑦

1

 = 𝒗’ 

 Coordinates have been translated, 𝒗’ still homogeneous 

Back to Translation 
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 Translation uses a 3x3 Matrix, but Scaling and Rotation are 2x2 Matrices 
 Let’s homogenize! Doesn’t affect linearity property of scaling and rotation 

 Our new transformation matrices look like this… 

 
 

 

 
 

 

 
 

 

 Note: These 3 transformations are called affine transformations 

 

Transformations Homogenized 

Transformation Matrix 

Scaling 𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

  

Rotation cos𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
  

Translation 1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1
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 Scaling: Scale by 15 in the 𝑥 direction, 17 in the 𝑦  

15 0 0
0 17 0
0 0 1

  

 

 Rotation: Rotate by 123°  

cos(123) −sin (123) 0

sin (123) cos (123) 0
0 0 1

  

 

 Translation: Translate by -16 in the 𝑥, +18 in the 𝑦 
1 0 −16
0 1 18
0 0 1

 

Examples 
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 Up until now, we’ve only used the notion of a point in our 2D space 

 We now present a distinction between points and vectors 

 

 

 

 

 We used Homogeneous coordinates to more conveniently represent 
translation; hence points are represented as (x, y, 1)T 

 A vector can be rotated/scaled, not translated (always starts at origin), don’t use 
the Homogeneous coordinate, (x, y, 0)T 

 For now, let’s focus on just our points (typically vertices) 

Before we continue! Vectors vs. Points 
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 How do we find the inverse of a transformation? 

 Take the inverse of the transformation matrix (thanks to homogenization, 
they’re all invertible!): 

 

Inverses 

Transformation Matrix Inverse Does it make sense? 

Scaling 1/𝑠𝑥 0 0
0 1/𝑠𝑦 0

0 0 1

 

If you scale something by factor X, the 
inverse is scaling by 1/X 
 

Rotation −
cos𝜃 𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
  

Not so obvious, but can use math! 
Rotation Matrix is orthonormal, so 
inverse should just be the transpose 

Translation 1 0 −𝑑𝑥
0 1 −𝑑𝑦
0 0 1

 
If you translate by X, the inverse is 
translating by -X 
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 We now have a number of tools at our disposal, we can combine them! 

 An object in a scene uses many transformations in sequence, how do we represent 
this in terms of functions? 

 Transformation is a function; by associativity we can compose functions: (𝑓 ° 𝑔) 𝑖  

 This is the same as first applying 𝑔 to some input 𝑖 and then applying 𝑓: (𝑓(𝑔(𝑖))) 

 Consider our functions 𝑓 and 𝑔 as matrices (𝑀1 and 𝑀2 respectively) and our input 
as a vector (𝒗) 

  Our composition is equivalent to 𝑀1𝑀2𝑣 

Composition of Transformations (2D) (1/2) 
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 We can now form compositions of transformation matrices to form a more complex 
transformation 

 For example, 𝑻𝑹𝑺𝒗,  which scales point, then rotates, then translates: 



1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

 
cos𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
 

s𝑥 0 0
0 s𝑦 0

0 0 1

 
𝑥
𝑦
1

 

 Note that we apply the matrices in sequence right to left, but practically, given associativity, we 
can compose them and apply the composite to all the vertices in, say, a mesh. 

 Important: Order Matters! 

 Matrix Multiplication is not commutative.  

 Be sure to check out the Transformation Game at 
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/explor
atories/applets/transformationGame/transformation_game_guide.html  

 Let’s see an example… 

 

Composition of Transformations (2D) (2/2) 
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Not commutative 

Translate by 

𝑥=6, 𝑦=0 then 

rotate by 45º 

Rotate by 45º 

then translate 

by 𝑥=6, 𝑦=0 

 0 
 1 

 1 

 2 

 2 

 3  4  5  6  7  8  9  10 

 3 

 4 

 5 

 6 

Y 

X 
 0 

 1 

 1 

 2 

 2 

 3  4  5  6  7  8  9  10 

 3 

 4 

 5 

 6 
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 Start:                                           Goal: 

 

 

 

 

 

 Important concept: Make the problem simpler 

 Translate object to origin first, scale , rotate, and translate back: 

 𝑻−𝟏𝑹𝑺𝑻 =  
1 0 3
0 1 3
0 0 1

cos90 −𝑠𝑖𝑛90 0
𝑠𝑖𝑛90 𝑐𝑜𝑠90 0

0 0 1

3 0 0
0 3 0
0 0 1

1 0 −3
0 1 −3
0 0 1

 

 Apply to all vertices 

 
 
 

Composition (an example) (2D) (1/2) 

Rotate 90° 
Uniform Scale 3x 
Both around object’s center, 
not the origin 
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 𝑻−𝟏𝑹𝑺𝑻 

 But what if we mixed up the 
order? Let’s try 𝑹𝑻−𝟏𝑺𝑻  



cos90 −𝑠𝑖𝑛90 0
𝑠𝑖𝑛90 𝑐𝑜𝑠90 0

0 0 1

1 0 3
0 1 3
0 0 1

3 0 0
0 3 0
0 0 1

1 0 −3
0 1 −3
0 0 1

 

 Oops! We managed to scale it 
properly but when we rotated it 
we rotated the object about the 
origin, not its own center, shifting 
its position…Order Matters! 

Composition (an example) (2D) (2/2) 
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 What is the inverse of a sequence of transformations? 

𝑴𝟏𝑴𝟐 … 𝑴𝒏
−𝟏 = 𝑴𝒏

−𝟏𝑴𝒏−𝟏
−𝟏 … 𝑴𝟏 

 Inverse of a sequence of transformations is the composition of the inverses of each 
transformation in reverse order 

 

 Say we want to do the opposite transform of the example on Slide 26, what will our 
sequence look like? 

𝑻−𝟏𝑹𝑺𝑻
−𝟏

= 𝑻−𝟏𝑺−𝟏𝑹−𝟏𝑻 



1 0 3
0 1 3
0 0 1

1/3 0 0
0 1/3 0
0 0 1

cos90 𝑠𝑖𝑛90 0
−𝑠𝑖𝑛90 𝑐𝑜𝑠90 0

0 0 1

1 0 −3
0 1 −3
0 0 1

 

 We still translate to origin first, then translate back at the end! 

 

 

 

 

Inverses Revisited 
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 How should we treat geometric  
transformations in 3D? 

 Just add one more coordinate/axis! 

 

 

 A point is represented as 
𝑥
𝑦
𝑧

 

 A matrix for a linear transformation 𝑻 can be represented as 
   

𝑻(𝑒1) 𝑻(𝑒2) 𝑻(𝑒3)
   

 where 𝑒3 corresponds to the z-coordinate, 
0
0
1

 

 But remember to use homogeneous coordinates!  Thus embed the scale and 
rotation matrices upper left submatrix, translation vector upper right column 

Dimension++ (3D!) 
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Transformation Matrix Comments 

Scaling 
𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

 
Looks just like the 2D version right? We 

just added an sz term. 

 

Rotation See next slide 

This one’s more complicated.  In 2D there 

is only one axis of rotation. In 3D there are 

infinitely many, thus the matrix has to take 

into account all possible axes. 

See next slide… 

Translation 
1 0 0 𝑑𝑥
0 1 0 𝑑𝑦
0 0 1 𝑑𝑧
0 0 0 1

 

Similar to the 2D version, we just have one 

more term, 𝑑𝑧, representing change in 

the 𝑧 axis 

 

Transformations in 3D 
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 Rotation by angle 𝜃 around vector 𝒖 = 

𝒖𝒙

𝒖𝒚

𝒖𝒛

 

 

 Here’s a not so friendly rotation matrix: 

 

 

 

 This is called the coordinate form of Rodrigues’s formula 

 Let’s try a different way… 

Rodrigues’s Formula… 

Note: This is an arbitrary unit vector 𝒖 in 𝑥𝑦𝑧 space 
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 Every rotation can be represented as the composition of 3 different angles of counter-
clockwise rotation around 3 axes, namely 
 𝑥-axis in the 𝑦𝑧 plane by 𝜓 
 𝑦-axis in the 𝑥𝑧 plane by 𝜃 
 𝑧-axis in the 𝑥𝑦 plane by 𝜙 

 Also known as Euler angles, makes problem of rotation much easier   

 

 
 

 

 
 

 𝑹𝒚𝒛 : rotation around  𝑥 axis, 𝑹𝒙𝒛 : rotation about 𝑦 axis,  𝑹𝒙𝒚 : rotation about 𝑧 axis 

 Note these differ only in where the 3x3 submatrix is embedded in the homogeneous matrix 

 You can compose these matrices to form a composite rotation matrix 
 

Rotating axis by axis (1/2) 

𝑅𝑥𝑦(𝜙) 𝑅𝑦𝑧 𝜓  𝑅𝑥𝑧 𝜃  

𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙 0 0
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0 0

0 0 1 0
0 0 0 1

 

 
 

1 0 0 0
0 𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
0 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 0 1

 

𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃 0
0 1 0 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃 0
0 0 0 1

 

 

32 



 It would still be difficult to find the 3 angles to rotate by, given arbitrary axis 𝒖 and specified 

angle 𝜓 
 Solution? Make the problem easier by mapping u to one of the principal axes 

 

 Step 1: Find a 𝜃 to rotate around 𝑦 axis to put 𝒖 in the 𝑥𝑦 plane 
 

 Step 2: Then find a 𝝓 to rotate around the 𝑧 axis to align 𝒖 with the  𝑥 axis 
 

 Step 3: Rotate by 𝜓 around  𝑥 axis = coincident 𝒖 axis 
 

 Step 4: Finally, undo the alignment rotations (inverse) 
 

 Rotation Matrix:  𝑴 = 𝑹𝒙𝒛
−𝟏 𝜽 𝑹𝒙𝒚

−𝟏(𝝓)𝑹𝒚𝒛 𝝍 𝑹𝒙𝒚 𝝓 𝑹𝒙𝒛 𝜽  
 

Rotating axis by axis (2/2) 
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 Inverses are once again parallel to their 2D versions… 

 

 

 

 

 

 

 

 

 

 

 Composition works exactly the same way… 

 
 

Inverses and Composition in 3D! 

Transformation Matrix Inverse 

Scaling 
1/𝑠𝑥 0 0 0

0 1/𝑠𝑦 0 0

0 0 1/𝑠𝑧 0
0 0 0 1

 

Rotation 
1 0 0 0
0 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
0 −𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 0 1

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 0 0
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0 0

0 0 1 0
0 0 0 1

𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃 0
0 1 0 0

𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃 0
0 0 0 1

 

 

Translation 
1 0 0 −𝑑𝑥
0 1 0 −𝑑𝑦
0 0 1 −𝑑𝑧
0 0 0 1
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 Let’s take some 3D object, say a cube, centered at (2,2,2) 
 Rotate in object’s space by 30° around 𝑥 axis, 60° around 𝑦 and 90° around 𝑧 

 Scale in object space by 1 in the 𝑥, 2 in the 𝑦, 3 in the 𝑧 

 Translate by (2,2,4) in world space 

 Transformation Sequence: 𝑻𝑻𝟎
−𝟏𝑺𝒙𝒚𝑹𝒙𝒚𝑹𝒙𝒛𝑹𝒚𝒛𝑻𝟎 , where 𝑻𝟎 translates to (0,0) 



1 0 0 2
0 1 0 2
0 0 1 4
0 0 0 1

 

1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

 

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1

 

𝑐𝑜𝑠90 𝑠𝑖𝑛90 0 0
−𝑠𝑖𝑛90 𝑐𝑜𝑠90 0 0

0 0 1 0
0 0 0 1

 

𝑐𝑜𝑠60 0 𝑠𝑖𝑛60 0
0 1 0 0

−𝑠𝑖𝑛60 0 𝑐𝑜𝑠60 0
0 0 0 1

1 0 0 0
0 𝑐𝑜𝑠30 𝑠𝑖𝑛30 0
0 −𝑠𝑖𝑛30 𝑐𝑜𝑠30 0
0 0 0 1

1 0 0 −2
0 1 0 −2
0 0 1 −2
0 0 0 1

      

Example in 3D! 
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 Objects can be complex: 
 

 

 
 

 
 

 3D scenes are often stored in a directed acyclic graph (DAG) called a scene graph 
 WPF  
 Open Scene Graph  
 Sun’s Java3D™ 
 X3D ™ (VRML ™ was a precursor to X3D) 

 Typical scene graph format: 
 objects (cubes, sphere, cone, polyhedra etc.): stored as nodes (default: unit size at origin) 
 attributes (color, texture map, etc.) stored as separate nodes 
 transformations are also nodes 

Transformations and the scene graph (1/4) 

ROBOT 

upper body lower body 

head 
base 

Scene Graph 

stanchion 
trunk arm arm 
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Transformations and the scene graph (2/4) 

Step 1:  Various transformations are 
applied to each of the leaves (object 
primitives—head, base, etc.) 
Step 2:  Transformations are then 
applied to groups of these objects as 
a whole (upper body, lower body) 
 
Together this hierarchy of 
transformations forms the “robot” 
scene as a whole 

Represents a  
transformation 

 For your assignments use simplified format: 
 Attributes stored as a components of each object node (no separate attribute node) 

 Transform node affects its subtree 

 Only leaf nodes are graphical objects 

 All internal nodes that are not transform nodes are group nodes 
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 Notion of a cumulative transformation 
matrix that builds as you move up the tree 
(𝑪𝑻𝑴), appending higher level 
transformation matrices to the front of 
your sequence 

 
 Example: 

 For o1, 𝑪𝑻𝑴 = 𝑴𝟏 
 For o2, 𝑪𝑻𝑴 =  𝑴𝟐 𝑴𝟑  
 For o3, 𝑪𝑻𝑴 =  𝑴𝟐 𝑴𝟒𝑴𝟓 

 For a vertex v in o3, position in world 
(root) coordinate system is: 

 𝑪𝑻𝑴 𝒗 =  (𝑴𝟐𝑴𝟒𝑴𝟓) 𝒗 

Transformations and the scene graph (3/4) 

object nodes (geometry) 

transformation nodes 

group nodes 

𝑴𝟏 

𝑴𝟑 

𝑴𝟐 

𝑴𝟒 

𝑴𝟓 
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 You can reuse groups of objects (sub-
trees) if they have been defined 

 Group 3 has been used twice here 

 Transformations defined within 
group 3 itself are the same 

 Different 𝑪𝑻𝑴s for each use of group 
3 as a whole 

 𝑻𝟎𝑻𝟏 𝑣𝑠. 𝑻𝟎𝑻𝟐𝑻𝟒 

 

Transformations and the scene graph (4/4) 

group3 

obj3 obj4 

𝑻𝟓 𝑻𝟔 

𝑻𝟒 

root 

  𝑻𝟎 

group1 

𝑻𝟏 𝑻𝟐 

obj1 group3 

𝑻𝟑 

group2 

group3 obj2 
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