INTRODUCTION TO COMPUTER GRAPHICS

Geometric Transformations
2D and 3D
Andries van Dam

How do we use Geometric Transformations? (1/2)

- Objects in a scene are a collection of points...

- These objects have location, orientation, size
- Corresponds to transformations, Translation (T), Rotation (R), and Scaling (\boldsymbol{S})

How do we use Geometric Transformations? (2/2)

- A scene has a camera/view point from which the scene is viewed
- The camera has some location and some orientation in 3-space ...

- These correspond to Translation and Rotation transformations
- Need other types of viewing transformations as well - learn about them shortly

Some Linear Algebra Concepts...

-3D Coordinate geometry
-Vectors in 2 space and 3 space

- Dot product and cross product - definitions and uses
-Vector and matrix notation and algebra
-Identity Matrix
-Multiplicative associativity

$$
\text { E.g. } \mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}
$$

-Matrix transpose and inverse - definition, use, and calculation
$\stackrel{H}{ }$ Homogeneous coordinates (x, y, z, \boldsymbol{w})
You will need to understand these concepts!

Linear Transformations (1/3)

- We represent vectors as bold-italic letters (v) and scalars as just italicized letters (c)
- Any vector in plane can be defined as addition of two non-collinear basis vectors in the plane
- Recall that a basis is a set of vectors with the following two properties:
- The vectors are linearly independent
- Any vector in the vector space can be generated by a linear combination of the basis vectors
- Scalar constants can be used to adjust magnitude and direction of resultant vector

Linear Transformations (2/3)

- Definition of a linear function, \boldsymbol{f} :
- $\boldsymbol{f}(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{f}(\boldsymbol{v})+\boldsymbol{f}(\boldsymbol{w})$ where domain and co-domain of \boldsymbol{f} are identical
> function of a vector addition is equivalent to addition of function applied to each of the vectors
- $\boldsymbol{f}(c \boldsymbol{v})=c \boldsymbol{f}(\boldsymbol{v})$
- function of a scalar multiplication with a vector is scalar multiplied by function applied to vector
- Both of these properties must be satisfied in order for \boldsymbol{f} to be a linear operator

Linear Transformations (3/3)

- Graphical Use: transformations of points around the origin (leaves the origin invariant)
- These include Scaling and Rotations (but not translation),
- Translation is not a linear function (moves the origin)
- Any linear transformation of a point will result in another point in the same coordinate system, transformed about the origin

Linear Transformations as Matrices (1/2)

- Linear Transformations can be represented as non-singular (invertible) matrices
- Let's start with 2D transformations:

$$
\boldsymbol{T}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- The matrix \boldsymbol{T} can also be written as:

$$
\left(\begin{array}{ll}
\boldsymbol{T}(e 1) & \boldsymbol{T}(e 2)
\end{array}\right) \text {, where } \boldsymbol{T}(e 1)=\left[\begin{array}{l}
a \\
c
\end{array}\right], \boldsymbol{T}(e 2)=\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

- Where $e 1$ and $e 2$ are the standard unit basis vectors along the x and y vectors:

$$
e 1=\left[\begin{array}{l}
1 \\
0
\end{array}\right], e 2=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Why is this important? This means we can compute the columns of a transformation matrix one by one by determining how our transformation effects each of the standard unit vectors. Thus \boldsymbol{T} "sends $e 1$ to $=\left[\begin{array}{l}a \\ c\end{array}\right]$ "
- Use this strategy to derive transformation matrices

Linear Transformations as Matrices (2/2)

- A transformation of an arbitrary column vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ has form:

$$
\boldsymbol{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

, Let's substitute $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ for $\left[\begin{array}{l}x \\ y\end{array}\right]: \quad \boldsymbol{T}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ c\end{array}\right]$

- transformation applied to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is $1^{\text {st }}$ column of \boldsymbol{T}
- Now substitute $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ for $\left[\begin{array}{l}x \\ y\end{array}\right]: \quad \boldsymbol{T}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}b \\ d\end{array}\right]$
- transformation applied to $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is $2^{\text {nd }}$ column of \boldsymbol{T}

Scaling in 2D (1/2)

- Scale x by 3, y by $2\left(S_{x}=3, S_{y}=2\right)$
- $\boldsymbol{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ (original vertex); $\boldsymbol{v}^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$ (new vertex)
- $\boldsymbol{v}^{\prime}=\boldsymbol{S} \boldsymbol{v}$
- Derive \boldsymbol{S} by determining how $e 1$ and $e 2$ should be transformed
- $e 1=\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow s_{x} * e 1=\left[\begin{array}{c}s_{x} \\ 0\end{array}\right]$ (Scale in X by $\left.s_{x}\right)$, the first column of S
- $e 2=\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow s_{y} * e 2=\left[\begin{array}{c}0 \\ s_{y}\end{array}\right]$ (Scale in Y by s_{y}), the second column of S
- Thus we obtain $\boldsymbol{S}:\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$

Scaling in 2D (2/2)

- \boldsymbol{S} is a diagonal matrix - can confirm our derivation by simply looking at properties of diagonal matrices:
, $\boldsymbol{D} \boldsymbol{v}=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a x \\ b y\end{array}\right]=\boldsymbol{v}^{\prime}$
- where \boldsymbol{D} is some diagonal matrix
- $i^{\text {th }}$ entry of $\boldsymbol{v}^{\prime}=\left(i^{\text {th }}\right.$ entry along diagonal of $\boldsymbol{D} * i^{\text {th }}$ entry of \boldsymbol{v})
- \boldsymbol{S} multiplies each coordinate of a \boldsymbol{v} by scaling factors (s_{x}, s_{y}) specified by the entries along the diagonal, as expected
- $s_{x}=a, s_{y}=b$
- Other properties of scaling:
- does not preserve lengths in objects
- does not preserve angles between parts of objects (except when scaling is uniform, $s_{x}=s_{y}$)
- if not at origin, translates house relative to origin- often not desired...

Rotation in 2D (1/2)

- Rotate by θ about origin
- $\boldsymbol{v}^{\prime}=\boldsymbol{S} \boldsymbol{v}$ where
- $\boldsymbol{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ (original vertex)
- $\boldsymbol{v}^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$ (new vertex)

- Derive \boldsymbol{R}_{\ominus} by determining how $e 1$ and $e 2$ should be transformed - $e 1=\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow\left[\begin{array}{l}\cos \boldsymbol{\theta} \boldsymbol{\theta} \\ \sin \boldsymbol{\theta}\end{array}\right]$, first column of $\boldsymbol{R}_{\text {e }}$
, $e 2=\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{c}-5 \sin \theta \\ \cos \theta\end{array}\right]$, second column of $\boldsymbol{R}_{\text {o }}$
- Thus we obtain $\boldsymbol{R}_{\theta}:\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Rotation in 2D (2/2)

- Let's try matrix-vector multiplication
, $\boldsymbol{R}_{\theta} * \boldsymbol{v}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \cos \theta-y \sin \theta \\ x \sin \theta+y \cos \theta\end{array}\right]=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\boldsymbol{v}^{\prime}$
- $x^{\prime}=x \cos \theta-y \sin \theta$
- $y^{\prime}=x \sin \theta+y \cos \theta$
- Other properties of rotation:
- preserves lengths in objects, and angles between parts of objects
- rotation is rigid-body
- for objects not at the origin, again a translation may be unwanted (i.e., this rotates about origin, not about house's center of rotation)

What about translation?

- Translation not a linear transformation (not centered about origin)
- Can't be represented as a 2 x 2 invertible matrix ...
- Question: Is there another solution?
- Answer: Yes, $v^{\prime}=v+t$, where $\boldsymbol{t}=\left[\begin{array}{l}d x \\ d y\end{array}\right]$
- Addition for translation - this is inconsistent
- If we could treat all transformations in a consistent manner, i.e., with matrix representation, then could combine transformations by composing their matrices
- Let's try using a Matrix again
- How? Homogeneous Coordinates: add an additional dimension, the waxis, and an extra coordinate, the wcomponent
- thus 2D -> 3D (effectively the hyperspace for embedding 2D space)

Homogeneous Coordinates (1/3)

- Allows expression of all three 2D transformations as 3×3 matrices
- We start with the point $P_{2 d}$ on the $x y$ plane and apply a mapping to bring it to the w-plane in hyperspace
- $P_{2 d}(x, y) \rightarrow P_{h}(w x, w y, w), w \neq 0$
- The resulting (x^{\prime}, y^{\prime}) coordinates in our new point P_{h} are different from the original (x, y), where $x^{\prime}=w x, y^{\prime}=w y$
- $P_{h}\left(x^{\prime}, y^{\prime}, w\right), w \neq 0$

Homogeneous Coordinates (2/3)

- Once we have this point we can apply a homogenized version of our
transformation matrices (next slides) to it to get a new point in hyperspace
- Finally, want to obtain resulting point in 2D-space again so perform a reverse of previous mapping (divide all entries by w)
- This converts our point in hyperspace to a corresponding point in 2D space
- $P_{2 d}(x, y)=P_{2 d}\left(\frac{x^{\prime}}{w}, \frac{y^{\prime}}{w}\right)$

The vertex $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ is now represented as $v=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

Homogeneous Coordinates (3/3)

- Make transformations map points in hyperplane to another point in hyperplane. Transformations applied to a point in the hyperplane will always yield a result also in the same hyperplane (mathematical closure)
, Transformation \boldsymbol{T} applied to $\boldsymbol{v}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ maps to $\boldsymbol{v}^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$
- How do we apply this to our transformation matrices?
- For linear transformations, maintain $2 x 2$ sub-matrix, expand the matrix as follows, where for 2D transformations, the upper left submatrix is the embedding of either the scale or the rotation matrix derived earlier:
- $\left[\begin{array}{lll}a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1\end{array}\right]$

Back to Translation

- Our translation matrix (\boldsymbol{T}) can now be represented by embedding the translation vector in the rightcolumn at the top as:

$$
\left[\begin{array}{ccc}
1 & 0 & d x \\
0 & 1 & d y \\
0 & 0 & 1
\end{array}\right]
$$

- Try it - multiply it by our homogenized vertex $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- $\boldsymbol{T} \boldsymbol{v}=\left[\begin{array}{lll}1 & 0 & d x \\ 0 & 1 & d y \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x+d x \\ y+d y \\ 1\end{array}\right]=\boldsymbol{v}^{\prime}$
- Coordinates have been translated, v^{\prime} still homogeneous

Transformations Homogenized

- Translation uses a 3x3 Matrix, but Scaling and Rotation are 2x2 Matrices
- Let's homogenize! Doesn't affect linearity property of scaling and rotation
- Our new transformation matrices look like this...

- Note: These 3 transformations are called affine transformations

Examples

- Scaling: Scale by 15 in the x direction, 17 in the y

$$
\left[\begin{array}{ccc}
15 & 0 & 0 \\
0 & 17 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Rotation: Rotate by 123°

$$
\left[\begin{array}{ccc}
\cos (123) & -\sin (123) & 0 \\
\sin (123) & \cos (123) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Translation: Translate by -16 in the $x,+18$ in the y

$$
\left[\begin{array}{ccc}
1 & 0 & -16 \\
0 & 1 & 18 \\
0 & 0 & 1
\end{array}\right]
$$

Before we continue! Vectors vs. Points

- Up until now, we've only used the notion of a point in our 2D space
- We now present a distinction between points and vectors

- We used Homogeneous coordinates to more conveniently represent translation; hence points are represented as $(x, y, 1)^{T}$
- A vector can be rotated/scaled, not translated (always starts at origin), don't use the Homogeneous coordinate, $(\boldsymbol{x}, \boldsymbol{y}, \mathbf{0})^{\boldsymbol{T}}$
- For now, let's focus on just our points (typically vertices)

Inverses

- How do we find the inverse of a transformation?
- Take the inverse of the transformation matrix (thanks to homogenization, they're all invertible!):

Transformation	Matrix Inverse	Does it make sense?
Scaling	$\left[\begin{array}{ccc}1 / s_{x} & 0 & 0 \\ 0 & 1 / s_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$	If you scale something by factor X , the inverse is scaling by $1 / \mathrm{X}$
Rotation	$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$	Not so obvious, but can use math! Rotation Matrix xs orthonormal, so inverse should just be the transpose
Translation	$\left[\begin{array}{ccc}1 & 0 & -d x \\ 0 & 1 & -d y \\ 0 & 0 & 1\end{array}\right]$	If you translate by X , the inverse is translating by -X

Composition of Transformations (2D) (1/2)

- We now have a number of tools at our disposal, we can combine them!
- An object in a scene uses many transformations in sequence, how do we represent this in terms of functions?
- Transformation is a function; by associativity we can compose functions: $\left(f^{\circ} g\right)(i)$
- This is the same as first applying g to some input i and then applying $f:(f(g(i)))$
- Consider our functions f and g as matrices (M_{1} and M_{2} respectively) and our input as a vector (\boldsymbol{v})
- Our composition is equivalent to $M_{1} M_{2} v$

Composition of Transformations (2D) (2/2)

- We can now form compositions of transformation matrices to form a more complex transformation
- For example, $\boldsymbol{T R S} \boldsymbol{v}$, which scales point, then rotates, then translates:
- $\left[\begin{array}{ccc}1 & 0 & d x \\ 0 & 1 & d y \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- Note that we apply the matrices in sequence right to left, but practically, given associativity, we can compose them and apply the composite to all the vertices in, say, a mesh.
, Important: Order Matters!
- Matrix Multiplication is not commutative.
- Be sure to check out the Transformation Game at http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/explor atories/applets/transformationGame/transformation game guide.html
- Let's see an example...

Not commutative
Translate by $x=6, y=0$ then rotate by 45°

Rotate by 45° then translate by $x=6, y=0$

Composition (an example) (2D) (1/2)

- Start:

Goal:

- Important concept: Make the problem simpler
- Translate object to origin first, scale , rotate, and translate back:
- $\boldsymbol{T}^{\boldsymbol{- 1}} \boldsymbol{R S T}=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos 90 & -\sin 90 & 0 \\ \sin 90 & \cos 90 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & -3 \\ 0 & 0 & 1\end{array}\right]$
- Apply to all vertices

Composition (an example) (2D) (2/2)

- T^{-1} RST
- But what if we mixed up the order? Let's try $\boldsymbol{R T} \boldsymbol{T}^{\mathbf{1}} \boldsymbol{S T}$

- $\left[\begin{array}{ccc}\cos 90 & -\sin 90 & 0 \\ \sin 90 & \cos 90 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & -3 \\ 0 & 0 & 1\end{array}\right]$
- Oops! We managed to scale it properly but when we rotated it we rotated the object about the origin, not its own center, shifting its position...Order Matters!

Inverses Revisited

- What is the inverse of a sequence of transformations?

$$
\left(M_{1} M_{2} \ldots M_{n}\right)^{-1}=M_{n}^{-1} M_{n-1}^{-1} \ldots M_{1}
$$

- Inverse of a sequence of transformations is the composition of the inverses of each transformation in reverse order
- Say we want to do the opposite transform of the example on Slide 26, what will our sequence look like?

$$
\left(T^{-1} R S T\right)^{-1}=T^{-1} S^{-1} R^{-1} T
$$

- $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 / 3 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos 90 & \sin 90 & 0 \\ -\sin 90 & \cos 90 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & -3 \\ 0 & 1 & -3 \\ 0 & 0 & 1\end{array}\right]$
- We still translate to origin first, then translate back at the end!

Dimension++ (3D!)

- How should we treat geometric transformations in 3D?
- Just add one more coordinate/axis!
- A point is represented as $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

- A matrix for a linear transformation \boldsymbol{T} can be represented as $\left[\begin{array}{lll}\boldsymbol{T}(e 1) & \boldsymbol{T}(e 2) & \boldsymbol{T}(e 3)\end{array}\right]$ where $e 3$ corresponds to the z-coordinate, $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- But remember to use homogeneous coordinates! Thus embed the scale and rotation matrices upper left submatrix, translation vector upper right column

Transformations in 3D

Transformation	Matrix	$\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	Comments Scaling		
Rotation	See next slide just like the 2D version right? We				
just added an s_{z} term.					This one's more complicated. In 2D there
:---					
is only one axis of rotation. In 3D there are					
infinitely many, thus the matrix has to take					
into account all possible axes.					
See next slide...					

Rodrigues's Formula...

Rotation by angle θ around vector $\boldsymbol{u}=\left[\begin{array}{l}\boldsymbol{u}_{\boldsymbol{x}} \\ \boldsymbol{u}_{\boldsymbol{y}} \\ \boldsymbol{u}_{\boldsymbol{z}}\end{array}\right]$
Note: This is an arbitrary unit vector \boldsymbol{u} in $x y z$ space

- Here's a not so friendly rotation matrix:

$$
R=\left[\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{\tilde{z}}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{\tilde{z}}^{2}(1-\cos \theta)
\end{array}\right] .
$$

- This is called the coordinate form of Rodrigues's formula
- Let's try a different way...

Rotating axis by axis (1/2)

- Every rotation can be represented as the composition of 3 different angles of counterclockwise rotation around 3 axes, namely
, x-axis in the $y z$ plane by ψ
, y-axis in the $x z$ plane by θ
- z-axis in the $x y$ plane by ϕ
- Also known as Euler angles, makes problem of rotation much easier
$\left.\begin{array}{c}R_{x y}(\phi)\end{array} \left\lvert\, \begin{array}{ccc}R_{y z}(\psi) & R_{x z}(\theta) \\ \hline \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 \\ 0 & 0 & 1\end{array}\right.\right]$
- $\boldsymbol{R}_{\boldsymbol{y z}}$: rotation around x axis, $\boldsymbol{R}_{\boldsymbol{x z}}$: rotation about y axis, $\boldsymbol{R}_{\boldsymbol{x} \boldsymbol{y}}$: rotation about z axis
- Note these differ only in where the $3 x 3$ submatrix is embedded in the homogeneous matrix
- You can compose these matrices to form a composite rotation matrix

Rotating axis by axis (2/2)

- It would still be difficult to find the 3 angles to rotate by, given arbitrary axis \boldsymbol{u} and specified angle ψ
- Solution? Make the problem easier by mapping \boldsymbol{u} to one of the principal axes
- Step 1: Find a θ to rotate around y axis to put \boldsymbol{u} in the $x y$ plane
- Step 2: Then find a $\boldsymbol{\phi}$ to rotate around the z axis to align \boldsymbol{u} with the x axis
- Step 3: Rotate by ψ around x axis $=$ coincident \boldsymbol{u} axis
- Step 4: Finally, undo the alignment rotations (inverse)
- Rotation Matrix: $M=\boldsymbol{R}_{x z}^{-1}(\boldsymbol{\theta}) \boldsymbol{R}_{x y}^{-1}(\boldsymbol{\phi}) \boldsymbol{R}_{y z}(\boldsymbol{\psi}) \boldsymbol{R}_{x y}(\boldsymbol{\phi}) \boldsymbol{R}_{x z}(\boldsymbol{\theta})$

Inverses and Composition in 3D!

- Inverses are once again parallel to their 2D versions...
$\left.\begin{array}{l|l|l|}\hline \text { Transformation } & \text { Matrix Inverse } \\ \hline \text { Scaling } & \\ \hline \text { Rotation } & {\left[\begin{array}{ccccc}1 & 0 & 0 & 0 \\ 0 & \cos \psi & \sin \psi & 0 \\ 0 & -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 / s_{x} & 0 & 0 & 0 \\ 0 & 1 / s_{y} & 0 & 0 \\ 0 & 0 & 1 / s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]} \\ \hline-\sin \phi & \sin \phi & 0 \\ 0 & \cos \phi & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0\end{array}\right]\left[\begin{array}{cccc}\cos \theta & 0 & -\sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- Composition works exactly the same way...

Example in 3D!

- Let's take some 3D object, say a cube, centered at $(2,2,2)$
- Rotate in object's space by 30° around x axis, 60° around y and 90° around z
- Scale in object space by 1 in the $x, 2$ in the $y, 3$ in the z
- Translate by $(2,2,4)$ in world space
- Transformation Sequence: $\boldsymbol{T}_{\mathbf{0}}^{\mathbf{- 1}} \boldsymbol{S}_{\boldsymbol{x y}} \boldsymbol{R}_{\boldsymbol{x} \boldsymbol{y}} \boldsymbol{R}_{\boldsymbol{x z}} \boldsymbol{R}_{\boldsymbol{y z}} \boldsymbol{T}_{\mathbf{0}}$, where $\boldsymbol{T}_{\mathbf{0}}$ translates to (0,0)

Transformations and the scene graph (1/4)

- Objects can be complex:

- 3D scenes are often stored in a directed acyclic graph (DAG) called a scene graph
- WPF
- Open Scene Graph
- Sun's Java3D ${ }^{\text {ra }}$
- X3D ${ }^{\text {TM }}$ (VRML ${ }^{\text {TM }}$ was a precursor to X3D)
- Typical scene graph format:
- objects (cubes, sphere, cone, polyhedra etc.): stored as nodes (default: unit size at origin)
- attributes (color, texture map, etc.) stored as separate nodes
- transformations are also nodes

Transformations and the scene graph (2/4)

- For your assignments use simplified format:
- Attributes stored as a components of each object node (no separate attribute node)
- Transform node affects its subtree
- Only leaf nodes are graphical objects
- All internal nodes that are not transform nodes are group nodes

Step 1: Various transformations are applied to each of the leaves (object primitives-head, base, etc.) Step 2: Transformations are then applied to groups of these objects as a whole (upper body, lower body)

Together this hierarchy of transformations forms the "robot" scene as a whole

Transformations and the scene graph (3/4)

- Notion of a cumulative transformation matrix that builds as you move up the tree (CTM), appending higher level transformation matrices to the front of your sequence
- For o1, CTM $=\boldsymbol{M}_{1}$
- For o2, $\boldsymbol{C T M}=\boldsymbol{M}_{2} \boldsymbol{M}_{3}$
- For o3, $\boldsymbol{C T M}=\boldsymbol{M}_{\mathbf{2}} \boldsymbol{M}_{\mathbf{4}} \boldsymbol{M}_{\mathbf{5}}$
- For a vertex v in o3, position in world (root) coordinate system is:
- CTMv $=\left(M_{2} M_{4} M_{5}\right) v$

Example:

Transformations and the scene graph (4/4)

- You can reuse groups of objects (subtrees) if they have been defined
- Group 3 has been used twice here
- Transformations defined within group 3 itself are the same
- Different CTMs for each use of group 3 as a whole
- $\boldsymbol{T}_{0} \boldsymbol{T}_{1}$ vs. $\boldsymbol{T}_{0} \boldsymbol{T}_{2} \boldsymbol{T}_{4}$

