
Geometric Transformations

2D and 3D

INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam

1

 Objects in a scene are a collection of points…

 These objects have location, orientation, size

 Corresponds to transformations, Translation (𝑻), Rotation (𝑹), and
Scaling (𝑺)

How do we use Geometric Transformations? (1/2)

2

 A scene has a camera/view point from which the scene is viewed

 The camera has some location and some orientation in 3-space …

 These correspond to Translation and Rotation transformations

 Need other types of viewing transformations as well - learn about them shortly

How do we use Geometric Transformations? (2/2)

3

3D Coordinate geometry

Vectors in 2 space and 3 space

Dot product and cross product – definitions and uses

Vector and matrix notation and algebra

Identity Matrix

Multiplicative associativity

E.g. A(BC) = (AB)C

Matrix transpose and inverse – definition, use, and calculation

Homogeneous coordinates (𝑥, 𝑦, 𝑧, 𝒘)

You will need to understand these concepts!

Some Linear Algebra Concepts...

4

 We represent vectors as bold-italic letters
(𝒗) and scalars as just italicized letters (c)

 Any vector in plane can be defined as
addition of two non-collinear basis vectors
in the plane

 Recall that a basis is a set of vectors with the
following two properties:

 The vectors are linearly independent

 Any vector in the vector space can be generated by a
linear combination of the basis vectors

 Scalar constants can be used to adjust
magnitude and direction of resultant vector

Linear Transformations (1/3)

a

b

𝒗 = a + b

5

 Definition of a linear function, f:

 f 𝒗 + 𝒘 = f 𝒗 + f(𝒘) where domain and co-domain of f are identical

 function of a vector addition is equivalent to addition of function applied to each of the
vectors

 f 𝑐𝒗 = 𝑐f 𝒗

 function of a scalar multiplication with a vector is scalar multiplied by function applied
to vector

 Both of these properties must be satisfied in order for f to be a linear operator

Linear Transformations (2/3)

6

 Graphical Use: transformations of
points around the origin (leaves
the origin invariant)

 These include Scaling and Rotations
(but not translation),

 Translation is not a linear function
(moves the origin)

 Any linear transformation of a point
will result in another point in the
same coordinate system, transformed
about the origin

Linear Transformations (3/3)

7

 Linear Transformations can be represented as non-singular (invertible) matrices

 Let’s start with 2D transformations:

 𝑻 =
𝑎 𝑏
𝑐 𝑑

 The matrix 𝑻 can also be written as:

𝑻 𝑒1 𝑻 𝑒2

 , where 𝑻 𝑒1 =

𝑎
𝑐

 , 𝑻 𝑒2 =
𝑏
𝑑

 Where 𝑒1 and 𝑒2 are the standard unit basis vectors along the x and y vectors:

 𝑒1 =
1
0

, 𝑒2 =
0
1

 Why is this important? This means we can compute the columns of a transformation matrix one
by one by determining how our transformation effects each of the standard unit vectors. Thus 𝑻

“sends 𝑒1 to =
𝑎
𝑐

 “

 Use this strategy to derive transformation matrices

Linear Transformations as Matrices (1/2)

8

 A transformation of an arbitrary column vector
𝑥
𝑦 has form:

 𝑻
𝑥
𝑦 =

𝑎 𝑏
𝑐 𝑑

𝑥
𝑦

 Let’s substitute
1
0

 for
𝑥
𝑦 : 𝑻

1
0

 =
𝑎 𝑏
𝑐 𝑑

1
0

=
𝑎
𝑐

 transformation applied to
1
0

 is 1st column of 𝑻

 Now substitute
0
1

 for
𝑥
𝑦 : 𝑻

0
1

 =
𝑎 𝑏
𝑐 𝑑

0
1

=
𝑏
𝑑

 transformation applied to
0
1

 is 2nd column of 𝑻

Linear Transformations as Matrices (2/2)

9

 Scale 𝑥 by 3, 𝑦 by 2 (Sx = 3, Sy = 2)

 𝒗 =
𝑥
𝑦 (original vertex); 𝒗’ =

𝑥′
𝑦′

 (new vertex)

 𝒗’ = 𝑺

𝒗

 Derive 𝑺 by determining how 𝑒1 and 𝑒2
should be transformed

 𝑒1 =
1
0

 𝑠𝑥 * 𝑒1 =
𝑠𝑥
0

 (Scale in X by 𝑠𝑥) , the

first column of 𝑺

 𝑒2 =
0
1

 𝑠𝑦 * 𝑒2 =
0

𝑠𝑦
 (Scale in Y by 𝑠𝑦), the

second column of 𝑺

 Thus we obtain 𝑺:
𝑠𝑥 0
0 𝑠𝑦

Scaling in 2D (1/2)

Side effect: House shifts
position relative to origin

2

6

2

9

1

2

1

3

10

 𝑺 is a diagonal matrix - can confirm our
derivation by simply looking at
properties of diagonal matrices:

 𝑫𝒗 =
𝑎 0
0 𝑏

𝑥
𝑦 =

𝑎𝑥
𝑏𝑦 = 𝒗’

 where 𝑫 is some diagonal matrix

 𝑖𝑡ℎ entry of 𝒗’ = (𝑖𝑡ℎ entry along
diagonal of 𝑫 ∗ 𝑖𝑡ℎ entry of 𝒗)

 𝑺 multiplies each coordinate of a 𝒗 by
scaling factors (𝑠𝑥, 𝑠𝑦) specified by the

entries along the diagonal, as expected

 𝑠𝑥 = 𝑎, 𝑠𝑦 = 𝑏

Scaling in 2D (2/2)

 Other properties of scaling:

 does not preserve lengths in objects

 does not preserve angles between parts
of objects (except when scaling is
uniform,𝑠𝑥 = 𝑠𝑦)

 if not at origin, translates house relative
to origin– often not desired…

11

 Rotate by 𝜃 about origin
 𝒗’ = 𝑺

𝒗 where

 𝒗 =
𝑥
𝑦 (original vertex)

 𝒗’=
𝑥′
𝑦′

 (new vertex)

 Derive 𝑹Ө by determining how 𝑒1 and 𝑒2 should be transformed

 𝑒1 =
1
0

cosӨ
sinӨ

 , first column of 𝑹Ө

 𝑒2 =
0
1

−sinӨ
cosӨ

 , second column of 𝑹Ө

 Thus we obtain 𝑹Ө :
cos 𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

Rotation in 2D (1/2)

12

 Let’s try matrix-vector multiplication

 𝑹𝜃 ∗ 𝒗 =
cos 𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑥
𝑦 =

x cos Ө – y sin Ө
x sin Ө + y cos Ө

=
𝑥′
𝑦′

 = 𝒗’

 𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃

 𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃

 Other properties of rotation:
 preserves lengths in objects, and angles between parts of objects
 rotation is rigid-body
 for objects not at the origin, again a translation may be unwanted (i.e., this

rotates about origin, not about house’s center of rotation)

Rotation in 2D (2/2)

13

 Translation not a linear
transformation (not centered about
origin)

 Can’t be represented as a 2x2
invertible matrix …

 Question: Is there another solution?

 Answer: Yes, 𝒗′ = 𝒗 + 𝒕, where

𝒕 =
𝑑𝑥
𝑑𝑦

 Addition for translation – this is
inconsistent

What about translation?

 If we could treat all transformations
in a consistent manner, i.e., with
matrix representation, then could
combine transformations by
composing their matrices

 Let’s try using a Matrix again

 How? Homogeneous Coordinates:
add an additional dimension, the w-
axis, and an extra coordinate, the w-
component

 thus 2D -> 3D (effectively the
hyperspace for embedding 2D space)

14

 Allows expression of all three 2D
transformations as 3x3 matrices

 We start with the point 𝑃2𝑑 on the 𝑥𝑦
plane and apply a mapping to bring it to
the 𝑤-plane in hyperspace

 𝑃2𝑑 𝑥, 𝑦 → 𝑃ℎ 𝑤𝑥, 𝑤𝑦, 𝑤 , 𝑤 ≠ 0

 The resulting (𝑥’, 𝑦’) coordinates in our
new point 𝑃ℎ are different from the
original (𝑥, 𝑦) , where 𝑥’ = 𝑤𝑥, 𝑦’ = 𝑤𝑦

 𝑃ℎ 𝑥′, 𝑦′, 𝑤 , 𝑤 ≠ 0

Homogeneous Coordinates (1/3)

15

 Once we have this point we can apply a
homogenized version of our
transformation matrices (next slides) to it
to get a new point in hyperspace

 Finally, want to obtain resulting point in
2D-space again so perform a reverse of
previous mapping (divide all entries by 𝑤)

 This converts our point in hyperspace to a
corresponding point in 2D space

 𝑃2𝑑 𝑥, 𝑦 = 𝑃2𝑑
𝑥′

𝑤
,

𝑦′

𝑤

 The vertex 𝒗 =
𝑥
𝑦 is now represented

as 𝒗 =
𝑥
𝑦
1

Homogeneous Coordinates (2/3)

16

 Make transformations map points in hyperplane to another point in
hyperplane. Transformations applied to a point in the hyperplane will always
yield a result also in the same hyperplane (mathematical closure)

 Transformation 𝑻 applied to 𝒗 =
𝑥
𝑦
1

 maps to 𝒗′ =
𝑥′
𝑦′
1

 How do we apply this to our transformation matrices?

 For linear transformations, maintain 2x2 sub-matrix, expand the matrix as
follows, where for 2D transformations, the upper left submatrix is the
embedding of either the scale or the rotation matrix derived earlier:

𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

Homogeneous Coordinates (3/3)

17

 Our translation matrix (𝑻) can now be represented by embedding the
translation vector in the rightcolumn at the top as:

1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

 Try it - multiply it by our homogenized vertex
𝑥
𝑦
1

 𝑻 𝒗 =
1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

𝑥
𝑦
1

 =
𝑥 + 𝑑𝑥
𝑦 + 𝑑𝑦

1

 = 𝒗’

 Coordinates have been translated, 𝒗’ still homogeneous

Back to Translation

18

 Translation uses a 3x3 Matrix, but Scaling and Rotation are 2x2 Matrices
 Let’s homogenize! Doesn’t affect linearity property of scaling and rotation

 Our new transformation matrices look like this…

 Note: These 3 transformations are called affine transformations

Transformations Homogenized

Transformation Matrix

Scaling 𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

Rotation cos𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1

Translation 1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

19

 Scaling: Scale by 15 in the 𝑥 direction, 17 in the 𝑦

15 0 0
0 17 0
0 0 1

 Rotation: Rotate by 123°

cos(123) −sin (123) 0

sin (123) cos (123) 0
0 0 1

 Translation: Translate by -16 in the 𝑥, +18 in the 𝑦
1 0 −16
0 1 18
0 0 1

Examples

20

 Up until now, we’ve only used the notion of a point in our 2D space

 We now present a distinction between points and vectors

 We used Homogeneous coordinates to more conveniently represent
translation; hence points are represented as (x, y, 1)T

 A vector can be rotated/scaled, not translated (always starts at origin), don’t use
the Homogeneous coordinate, (x, y, 0)T

 For now, let’s focus on just our points (typically vertices)

Before we continue! Vectors vs. Points

21

 How do we find the inverse of a transformation?

 Take the inverse of the transformation matrix (thanks to homogenization,
they’re all invertible!):

Inverses

Transformation Matrix Inverse Does it make sense?

Scaling 1/𝑠𝑥 0 0
0 1/𝑠𝑦 0

0 0 1

If you scale something by factor X, the
inverse is scaling by 1/X

Rotation −
cos𝜃 𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1

Not so obvious, but can use math!
Rotation Matrix is orthonormal, so
inverse should just be the transpose

Translation 1 0 −𝑑𝑥
0 1 −𝑑𝑦
0 0 1

If you translate by X, the inverse is
translating by -X

22

 We now have a number of tools at our disposal, we can combine them!

 An object in a scene uses many transformations in sequence, how do we represent
this in terms of functions?

 Transformation is a function; by associativity we can compose functions: (𝑓 ° 𝑔) 𝑖

 This is the same as first applying 𝑔 to some input 𝑖 and then applying 𝑓: (𝑓(𝑔(𝑖)))

 Consider our functions 𝑓 and 𝑔 as matrices (𝑀1 and 𝑀2 respectively) and our input
as a vector (𝒗)

 Our composition is equivalent to 𝑀1𝑀2𝑣

Composition of Transformations (2D) (1/2)

23

 We can now form compositions of transformation matrices to form a more complex
transformation

 For example, 𝑻𝑹𝑺𝒗, which scales point, then rotates, then translates:

1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

cos𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1

s𝑥 0 0
0 s𝑦 0

0 0 1

𝑥
𝑦
1

 Note that we apply the matrices in sequence right to left, but practically, given associativity, we
can compose them and apply the composite to all the vertices in, say, a mesh.

 Important: Order Matters!

 Matrix Multiplication is not commutative.

 Be sure to check out the Transformation Game at
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/explor
atories/applets/transformationGame/transformation_game_guide.html

 Let’s see an example…

Composition of Transformations (2D) (2/2)

24

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/transformationGame/transformation_game_guide.html
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/transformationGame/transformation_game_guide.html

Not commutative

Translate by

𝑥=6, 𝑦=0 then

rotate by 45º

Rotate by 45º

then translate

by 𝑥=6, 𝑦=0

 0
 1

 1

 2

 2

 3 4 5 6 7 8 9 10

 3

 4

 5

 6

Y

X
 0

 1

 1

 2

 2

 3 4 5 6 7 8 9 10

 3

 4

 5

 6

25

 Start: Goal:

 Important concept: Make the problem simpler

 Translate object to origin first, scale , rotate, and translate back:

 𝑻−𝟏𝑹𝑺𝑻 =
1 0 3
0 1 3
0 0 1

cos90 −𝑠𝑖𝑛90 0
𝑠𝑖𝑛90 𝑐𝑜𝑠90 0

0 0 1

3 0 0
0 3 0
0 0 1

1 0 −3
0 1 −3
0 0 1

 Apply to all vertices

Composition (an example) (2D) (1/2)

Rotate 90°
Uniform Scale 3x
Both around object’s center,
not the origin

26

 𝑻−𝟏𝑹𝑺𝑻

 But what if we mixed up the
order? Let’s try 𝑹𝑻−𝟏𝑺𝑻

cos90 −𝑠𝑖𝑛90 0
𝑠𝑖𝑛90 𝑐𝑜𝑠90 0

0 0 1

1 0 3
0 1 3
0 0 1

3 0 0
0 3 0
0 0 1

1 0 −3
0 1 −3
0 0 1

 Oops! We managed to scale it
properly but when we rotated it
we rotated the object about the
origin, not its own center, shifting
its position…Order Matters!

Composition (an example) (2D) (2/2)

27

 What is the inverse of a sequence of transformations?

𝑴𝟏𝑴𝟐 … 𝑴𝒏
−𝟏 = 𝑴𝒏

−𝟏𝑴𝒏−𝟏
−𝟏 … 𝑴𝟏

 Inverse of a sequence of transformations is the composition of the inverses of each
transformation in reverse order

 Say we want to do the opposite transform of the example on Slide 26, what will our
sequence look like?

𝑻−𝟏𝑹𝑺𝑻
−𝟏

= 𝑻−𝟏𝑺−𝟏𝑹−𝟏𝑻

1 0 3
0 1 3
0 0 1

1/3 0 0
0 1/3 0
0 0 1

cos90 𝑠𝑖𝑛90 0
−𝑠𝑖𝑛90 𝑐𝑜𝑠90 0

0 0 1

1 0 −3
0 1 −3
0 0 1

 We still translate to origin first, then translate back at the end!

Inverses Revisited

28

 How should we treat geometric
transformations in 3D?

 Just add one more coordinate/axis!

 A point is represented as
𝑥
𝑦
𝑧

 A matrix for a linear transformation 𝑻 can be represented as

𝑻(𝑒1) 𝑻(𝑒2) 𝑻(𝑒3)

 where 𝑒3 corresponds to the z-coordinate,
0
0
1

 But remember to use homogeneous coordinates! Thus embed the scale and
rotation matrices upper left submatrix, translation vector upper right column

Dimension++ (3D!)

29

Transformation Matrix Comments

Scaling
𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

Looks just like the 2D version right? We

just added an sz term.

Rotation See next slide

This one’s more complicated. In 2D there

is only one axis of rotation. In 3D there are

infinitely many, thus the matrix has to take

into account all possible axes.

See next slide…

Translation
1 0 0 𝑑𝑥
0 1 0 𝑑𝑦
0 0 1 𝑑𝑧
0 0 0 1

Similar to the 2D version, we just have one

more term, 𝑑𝑧, representing change in

the 𝑧 axis

Transformations in 3D

30

 Rotation by angle 𝜃 around vector 𝒖 =

𝒖𝒙

𝒖𝒚

𝒖𝒛

 Here’s a not so friendly rotation matrix:

 This is called the coordinate form of Rodrigues’s formula

 Let’s try a different way…

Rodrigues’s Formula…

Note: This is an arbitrary unit vector 𝒖 in 𝑥𝑦𝑧 space

31

 Every rotation can be represented as the composition of 3 different angles of counter-
clockwise rotation around 3 axes, namely
 𝑥-axis in the 𝑦𝑧 plane by 𝜓
 𝑦-axis in the 𝑥𝑧 plane by 𝜃
 𝑧-axis in the 𝑥𝑦 plane by 𝜙

 Also known as Euler angles, makes problem of rotation much easier

 𝑹𝒚𝒛 : rotation around 𝑥 axis, 𝑹𝒙𝒛 : rotation about 𝑦 axis, 𝑹𝒙𝒚 : rotation about 𝑧 axis

 Note these differ only in where the 3x3 submatrix is embedded in the homogeneous matrix

 You can compose these matrices to form a composite rotation matrix

Rotating axis by axis (1/2)

𝑅𝑥𝑦(𝜙) 𝑅𝑦𝑧 𝜓 𝑅𝑥𝑧 𝜃

𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙 0 0
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
0 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 0 1

𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃 0
0 1 0 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃 0
0 0 0 1

32

 It would still be difficult to find the 3 angles to rotate by, given arbitrary axis 𝒖 and specified

angle 𝜓
 Solution? Make the problem easier by mapping u to one of the principal axes

 Step 1: Find a 𝜃 to rotate around 𝑦 axis to put 𝒖 in the 𝑥𝑦 plane

 Step 2: Then find a 𝝓 to rotate around the 𝑧 axis to align 𝒖 with the 𝑥 axis

 Step 3: Rotate by 𝜓 around 𝑥 axis = coincident 𝒖 axis

 Step 4: Finally, undo the alignment rotations (inverse)

 Rotation Matrix: 𝑴 = 𝑹𝒙𝒛
−𝟏 𝜽 𝑹𝒙𝒚

−𝟏(𝝓)𝑹𝒚𝒛 𝝍 𝑹𝒙𝒚 𝝓 𝑹𝒙𝒛 𝜽

Rotating axis by axis (2/2)

33

 Inverses are once again parallel to their 2D versions…

 Composition works exactly the same way…

Inverses and Composition in 3D!

Transformation Matrix Inverse

Scaling
1/𝑠𝑥 0 0 0

0 1/𝑠𝑦 0 0

0 0 1/𝑠𝑧 0
0 0 0 1

Rotation
1 0 0 0
0 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
0 −𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 0 1

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 0 0
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0 0

0 0 1 0
0 0 0 1

𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃 0
0 1 0 0

𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃 0
0 0 0 1

Translation
1 0 0 −𝑑𝑥
0 1 0 −𝑑𝑦
0 0 1 −𝑑𝑧
0 0 0 1

34

 Let’s take some 3D object, say a cube, centered at (2,2,2)
 Rotate in object’s space by 30° around 𝑥 axis, 60° around 𝑦 and 90° around 𝑧

 Scale in object space by 1 in the 𝑥, 2 in the 𝑦, 3 in the 𝑧

 Translate by (2,2,4) in world space

 Transformation Sequence: 𝑻𝑻𝟎
−𝟏𝑺𝒙𝒚𝑹𝒙𝒚𝑹𝒙𝒛𝑹𝒚𝒛𝑻𝟎 , where 𝑻𝟎 translates to (0,0)

1 0 0 2
0 1 0 2
0 0 1 4
0 0 0 1

1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1

𝑐𝑜𝑠90 𝑠𝑖𝑛90 0 0
−𝑠𝑖𝑛90 𝑐𝑜𝑠90 0 0

0 0 1 0
0 0 0 1

𝑐𝑜𝑠60 0 𝑠𝑖𝑛60 0
0 1 0 0

−𝑠𝑖𝑛60 0 𝑐𝑜𝑠60 0
0 0 0 1

1 0 0 0
0 𝑐𝑜𝑠30 𝑠𝑖𝑛30 0
0 −𝑠𝑖𝑛30 𝑐𝑜𝑠30 0
0 0 0 1

1 0 0 −2
0 1 0 −2
0 0 1 −2
0 0 0 1

Example in 3D!

35

 Objects can be complex:

 3D scenes are often stored in a directed acyclic graph (DAG) called a scene graph
 WPF
 Open Scene Graph
 Sun’s Java3D™
 X3D ™ (VRML ™ was a precursor to X3D)

 Typical scene graph format:
 objects (cubes, sphere, cone, polyhedra etc.): stored as nodes (default: unit size at origin)
 attributes (color, texture map, etc.) stored as separate nodes
 transformations are also nodes

Transformations and the scene graph (1/4)

ROBOT

upper body lower body

head
base

Scene Graph

stanchion
trunk arm arm

36

Transformations and the scene graph (2/4)

Step 1: Various transformations are
applied to each of the leaves (object
primitives—head, base, etc.)
Step 2: Transformations are then
applied to groups of these objects as
a whole (upper body, lower body)

Together this hierarchy of
transformations forms the “robot”
scene as a whole

Represents a
transformation

 For your assignments use simplified format:
 Attributes stored as a components of each object node (no separate attribute node)

 Transform node affects its subtree

 Only leaf nodes are graphical objects

 All internal nodes that are not transform nodes are group nodes

37

 Notion of a cumulative transformation
matrix that builds as you move up the tree
(𝑪𝑻𝑴), appending higher level
transformation matrices to the front of
your sequence

 Example:

 For o1, 𝑪𝑻𝑴 = 𝑴𝟏
 For o2, 𝑪𝑻𝑴 = 𝑴𝟐 𝑴𝟑
 For o3, 𝑪𝑻𝑴 = 𝑴𝟐 𝑴𝟒𝑴𝟓

 For a vertex v in o3, position in world
(root) coordinate system is:

 𝑪𝑻𝑴 𝒗 = (𝑴𝟐𝑴𝟒𝑴𝟓) 𝒗

Transformations and the scene graph (3/4)

object nodes (geometry)

transformation nodes

group nodes

𝑴𝟏

𝑴𝟑

𝑴𝟐

𝑴𝟒

𝑴𝟓

38

 You can reuse groups of objects (sub-
trees) if they have been defined

 Group 3 has been used twice here

 Transformations defined within
group 3 itself are the same

 Different 𝑪𝑻𝑴s for each use of group
3 as a whole

 𝑻𝟎𝑻𝟏 𝑣𝑠. 𝑻𝟎𝑻𝟐𝑻𝟒

Transformations and the scene graph (4/4)

group3

obj3 obj4

𝑻𝟓 𝑻𝟔

𝑻𝟒

root

 𝑻𝟎

group1

𝑻𝟏 𝑻𝟐

obj1 group3

𝑻𝟑

group2

group3 obj2

39

