CSC 321 Computer Graphics

 Ray-Object Intersection
Ray-Object Intersection

- General approach
- Represent ray in parametric form

$$
q=P+t d
$$

- Represent surface in implicit form

$$
\mathrm{f}[\mathrm{q}]=0
$$

- Substitute ray into surface, and solve for $t(\mathrm{P}, \mathrm{d}$ are known) $f[P+t d]=0$
- Substitute t back into ray equation, find intersection point q
- Use the smallest positive t (to find nearest intersection point)

Implicit Functions

Plane $f[q]=(q-g) \cdot n$	Sphere
Cylinder (no cap) $\begin{aligned} & v=q-g \\ & f[q]=(v-(v \cdot n) n)^{2}-r^{2} \end{aligned}$	Cone (no cap) $\begin{aligned} & v=q-g \\ & f[q]=(v-(v \cdot n) n)^{2}-r^{2}(v \cdot n)^{2} \end{aligned}$

Example: Ray-Plane Intersects

Ray equation: $q=P+t d$

- Plane definition

$$
\mathrm{f}[\mathrm{q}]=(\mathrm{q}-\mathrm{g}) \cdot \mathrm{n}=0
$$

- Substituting ray into equation and solve $\mathrm{f}[\mathrm{P}+\mathrm{td} \mathrm{d}]=(\mathrm{P}+\mathrm{td}-\mathrm{g}) \cdot \mathrm{n}=0$
$\mathrm{t}=\frac{(\mathrm{g}-\mathrm{p}) \cdot \mathrm{n}}{\mathrm{d} \cdot \mathrm{n}}$
- Substitute t back and find intersection
$q=P+t d=P+\frac{(g-p) \cdot n}{d \cdot n} d$

Example: Ray-Plane Intersects

Ray equation: $q=P+t d$

- Plane definition

$$
\mathrm{f}[\mathrm{q}]=(\mathrm{q}-\mathrm{g}) \cdot \mathrm{n}=0
$$

- Substituting ray into equation and solve

$f[P+t d]=(P+t d-g) \cdot n=0$
$\mathrm{t}=\frac{(\mathrm{g}-\mathrm{p}) \cdot \mathrm{n}}{\mathrm{d} \cdot \mathrm{n}}$
- Substitute t back and find intersection
$q=P+t d=P+\frac{(g-p) \cdot n}{d \cdot n} d$
- No intersection if
- d. $n=0$ (Ray parallel to plane) or
- $\mathrm{t}<0$ (behind the ray origin).

Example: Ray-Sphere Intersects

Ray equation: $q=P+t d$

- Sphere definition

$$
\mathrm{f}[\mathrm{q}]=(\mathrm{q}-\mathrm{g})^{2}-\mathrm{r}^{2}=0
$$

- Substituting ray into equation and solve $f[P+t d]=(P+t d-g)^{2}-r^{2}=A t^{2}+B t+C=0$ where $A=d^{2}, B=2 d \cdot(P-g), C=(P-g)^{2}-r^{2}$
 $t_{1}=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A}, t_{2}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A} \quad\left(t_{1} \leq t_{2}\right)$

Example: Ray-Sphere Intersects

Ray equation: $q=P+t d$

- Sphere definition
$\mathrm{f}[\mathrm{q}]=(\mathrm{q}-\mathrm{g})^{2}-\mathrm{r}^{2}=0$

Constructive Solid Geometry (CSG)

- Boolean results of basic shapes
- Example: capped cylinder = cylinder $\cap 2$ half-spaces
- Defined by multiple implicit functions
- Side: $\mathrm{f}[\mathrm{q}]=((\mathrm{q}-\mathrm{g})-((\mathrm{q}-\mathrm{g}) \cdot \mathrm{n}) \mathrm{n})^{2}-\mathrm{r}^{2}$
- Top: $f_{1}[q]=(q-g-h n) \cdot n$
- Bottom: $\mathrm{f}_{2}[\mathrm{q}]=(\mathrm{q}-\mathrm{g}+\mathrm{hn}) \cdot \mathrm{n}$
- Point q lies inside or on the capped cylinder if $\mathrm{f}[\mathrm{q}] \leq 0 \& \& \mathrm{f}_{1}[\mathrm{q}] \leq 0 \& \& \mathrm{f}_{2}[\mathrm{q}] \geq 0$

Constructive Solid Geometry (CSG)

- Finding intersections with CSG
- Intersect with each composing implicit function
- Make sure the intersection lies ON the shape

Constructive Solid Geometry (CSG)

- Example: a capped cylinder
- A point q lies on the top plane if

$$
f_{1}[q]=0, f[q] \leq 0
$$

- A point q lies on the bottom plane if

$$
f_{2}[q]=0, f[q] \leq 0
$$

- A point q lies on the side if

$$
f[q]=0, f_{1}[q] \leq 0 \& \& f_{2}[q] \geq 0
$$

Constructive Solid Geometry (CSG)

- Example: A capped cone
- How many implicit functions define this shape?
- Infinite cone: $\mathrm{f}[\mathrm{q}]=(\mathrm{v}-(\mathrm{v} \cdot \mathrm{n}) \mathrm{n})^{2}-\mathrm{r}^{2}(\mathrm{v} \cdot \mathrm{n})^{2}$, where $\mathrm{v}=\mathrm{q}-\mathrm{g}$
- Top plane: $f_{1}[q]=(q-g) \cdot n$
- Bottom plane: $\mathrm{f}_{2}[\mathrm{q}]=(\mathrm{q}-\mathrm{g}-\mathrm{hn}) \cdot \mathrm{n}$
- Point q lies inside or on the capped cone if $f[p] \leq 0 \& \& f_{1}[p] \leq 0 \& \& f_{2}[p] \geq 0$
- Point q lies
- On the side if: $f[q]=0, f_{1}[q] \leq 0 \& \& f_{2}[q] \geq 0$
- On the base if: $f_{2}[q]=0, f[q] \leq 0$

Triangles

- First test if ray intersects the plane
- Triangle vertices g_{1}, g_{2}, g_{3}
- Plane defined by point g_{1} and normal $\mathrm{n}=\left(\mathrm{g}_{2}-\mathrm{g}_{1}\right) \times\left(\mathrm{g}_{3}-\mathrm{g}_{2}\right)$
- Next test if the intersection lies in the triangle
- Let intersection be q
- If q lies inside, the triangles $q g_{i} g_{i+1}$ have same orientation as the triangle $g_{1} g_{2} g_{3}$
$n \cdot\left(\left(g_{i+1}-g_{i}\right) \times\left(q-g_{i+1}\right)\right)>0$
$i=1,2,3$

