CSC 321 Computer Graphics

Ray-Object Intersection

Ray-Object Intersection

- General approach
 - Represent ray in parametric form

$$q = P + t d$$

Represent surface in *implicit* form

$$f[q] = 0$$

Substitute ray into surface, and solve for t (P, d are known)

$$f[P+td]=0$$

- Substitute t back into ray equation, find intersection point q
 - Use the smallest positive t (to find nearest intersection point)

Implicit Functions

Plane

$$f[q] = (q - g) \cdot n$$

Sphere

$$f[q] = (q - g)^2 - r^2$$

Cylinder (no cap)

v = q - g

$$f[q] = (v - (v \cdot n) n)^2 - r^2$$

Cone (no cap)

$$v = q - g$$

 $f[q] = (v - (v \cdot n) n)^2 - r^2 (v \cdot n)^2$

Example: Ray-Plane Intersects

Ray equation: q = P + t d

Plane definition

$$f[q] = (q-g) \cdot n = 0$$

Substituting ray into equation and solve

$$f[P+td] = (P+td-g) \cdot n = 0$$

$$t = \frac{(g-p) \cdot n}{d \cdot n}$$

Substitute t back and find intersection

$$q = P + t d = P + \frac{(g - p) \cdot n}{d \cdot n} d$$

Example: Ray-Plane Intersects

Ray equation: q = P + t d

Plane definition

$$f[q] = (q-g) \cdot n = 0$$

Substituting ray into equation and solve

$$f[P+td] = (P+td-g) \cdot n = 0$$

$$t = \frac{(g-p) \cdot n}{d \cdot n}$$

Substitute t back and find intersection

$$q = P + t d = P + \frac{(g - p) \cdot n}{d \cdot n} d$$

- No intersection if
 - d.n=0 (Ray parallel to plane) or
 - t < 0 (behind the ray origin).

Example: Ray-Sphere Intersects

Ray equation: q = P + t d

Sphere definition

$$f[q] = (q-g)^2 - r^2 = 0$$

Substituting ray into equation and solve

$$f[P+td] = (P+td-g)^{2} - r^{2} = At^{2} + Bt + C = 0$$
where $A = d^{2}$, $B = 2d \cdot (P-g)$, $C = (P-g)^{2} - r^{2}$

$$t_{1} = \frac{-B - \sqrt{B^{2} - 4AC}}{2A}$$
, $t_{2} = \frac{-B + \sqrt{B^{2} - 4AC}}{2A}$ $(t_{1} \le t_{2})$

Example: Ray-Sphere Intersects

Ray equation:

$$q = P + t d$$

Sphere definition

$$f[q] = (q-g)^2 - r^2 = 0$$

Substituting ray into equation and solve

$$f[P+td] = (P+td-g)^{2} - r^{2} = At^{2} + Bt + C = 0$$
where $A = d^{2}$, $B = 2d \cdot (P-g)$, $C = (P-g)^{2} - r^{2}$

$$t_{1} = \frac{-B - \sqrt{B^{2} - 4AC}}{2A}$$
, $t_{2} = \frac{-B + \sqrt{B^{2} - 4AC}}{2A}$ ($t_{1} \le t_{2}$)

- Find Intersection
 - No intersection if $B^2 < 4 AC$ or $t_2 < 0$
 - If $t_1 < 0$ and $t_2 > 0$: $q = P + t_2 d$
 - $Ift_1 > 0 : q = P + t_1 d$

- Boolean results of basic shapes
 - Example: capped cylinder = cylinder ∩ 2 half-spaces
 - Defined by multiple implicit functions

• Side:
$$f[q] = ((q-g) - ((q-g) \cdot n) n)^2 - r^2$$

- Top: $f_1[q] = (q g h n) \cdot n$
- Bottom: $f_2[q] = (q g + h n) \cdot n$
- Point q lies inside or on the capped cylinder if

$$f[q] \le 0 \&\& f_1[q] \le 0 \&\& f_2[q] \ge 0$$

- Finding intersections with CSG
 - Intersect with each composing implicit function
 - Make sure the intersection lies ON the shape

- Example: a capped cylinder
 - A point q lies on the top plane if

$$f_1[q] = 0, f[q] \le 0$$

A point q lies on the bottom plane if

$$f_2[q] = 0$$
, $f[q] \le 0$

A point q lies on the side if

$$f[q] = 0, f_1[q] \le 0 \&\& f_2[q] \ge 0$$

- Example: A capped cone
 - How many implicit functions define this shape?
 - Infinite cone: $f[q] = (v (v \cdot n) n)^2 r^2 (v \cdot n)^2$, where v = q g
 - Top plane: $f_1[q] = (q-g) \cdot n$
 - Bottom plane: $f_2[q] = (q g h n) \cdot n$
 - Point q lies inside or on the capped cone if

$$f[p] \le 0 \&\& f_1[p] \le 0 \&\& f_2[p] \ge 0$$

- Point q lies
 - On the side if: f[q] = 0, $f_1[q] \le 0$ && $f_2[q] \ge 0$
 - On the base if: $f_2[q] = 0$, $f[q] \le 0$

Triangles

- First test if ray intersects the plane
 - Triangle vertices g₁, g₂, g₃
 - Plane defined by point g_1 and normal $n = (g_2 g_1) \times (g_3 g_2)$
- Next test if the intersection lies in the triangle
 - Let intersection be q
 - If q lies inside, the triangles $q g_i g_{i+1}$ have same orientation as the triangle $g_1 g_2 g_3$

$$n \cdot ((g_{i+1} - g_i) \times (q - g_{i+1})) > 0$$

i = 1, 2, 3