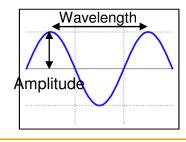
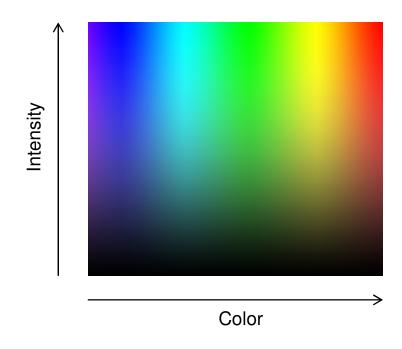

CSC 321 Computer Graphics

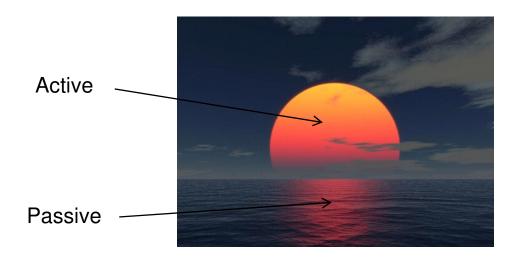
Illumination

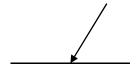
What is light?


- Electromagnetic radiation that is visible to the human eye
 - Carried by "photons" but also exhibits wave behaviors
- Properties
 - Speed (constant)
 - Direction (straight)
 - Wavelength ("color")



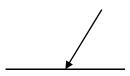
What is light?

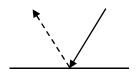

- Electromagnetic radiation that is visible to the human eye
 - Carried by "photons" but also exhibits wave behaviors
- Properties
 - Speed (constant)
 - Direction (straight)
 - Wavelength ("color")
 - Amplitude ("intensity")



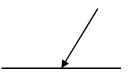
How is a surface lit?

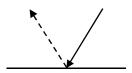
- By the (color and intensity of) light that is transmitted from the surface in the direction towards our eye
 - Active: the surface is emitting light (i.e., a light source)
 - Passive: the light originates from somewhere else

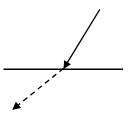

- When a photon hits a surface it may
 - Get absorbed (turned into heat or other energy)

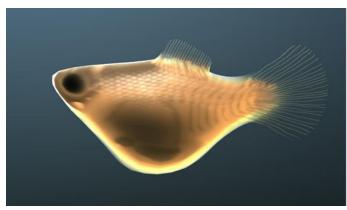


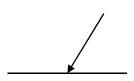
- When a photon hits a surface it may
 - Get absorbed
 - Reflect

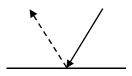


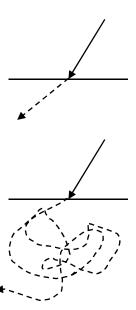

Slide 6

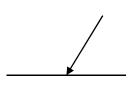

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract

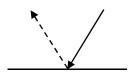


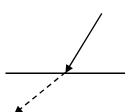


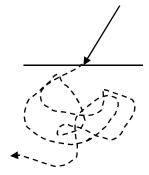



- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract
 - Scatter





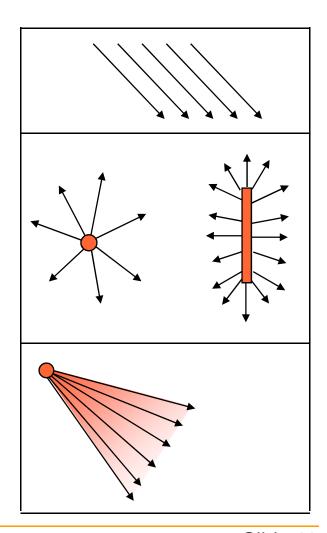



- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract
 - Scatter

- May change direction, color, and intensity
- What happens depends on:
 - The color and intensity of light
 - Color and material of surface
 - Reflective? Diffusive? Transparent? Opaque? Translucent?
 - Orientation of surface with respect to the light source and eye

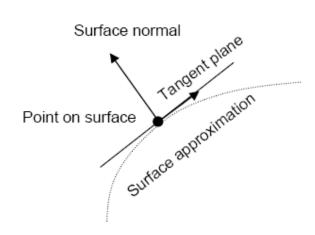
Illumination (in Computer Graphics)

- Given
 - Light sources, object surfaces and the camera
- Compute
 - Color of each pixel on the screen
 - As intensity of photons that come towards the camera in that viewing direction


Computer Representation

Light sources

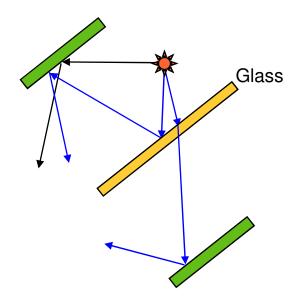
- Directional light (e.g., the sunlight)
 - Emitting photons in one direction
- Point/Area light (e.g., light bulb)
 - Emitting photons in all directions from a single source
- Spot light (e.g., a flashlight)
 - Emitting photons from a single source forming a cone

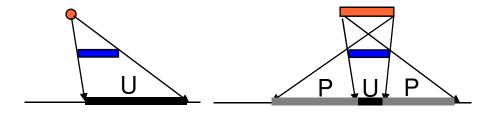

Light attenuation

- Intensity falls off with distance
 - Not applicable to directional light


Computer Representation

- Surface
 - A geometric surface can be
 - Discrete: consisting of polygons (e.g., triangles), or
 - Continuous: parametric surface (e.g., the sphere)
 - Each surface element is locally represented by
 - The point location
 - The normal vector of the tangent plane
 - Discrete: polygon normal
 - Continuous: first derivatives


Local Illumination

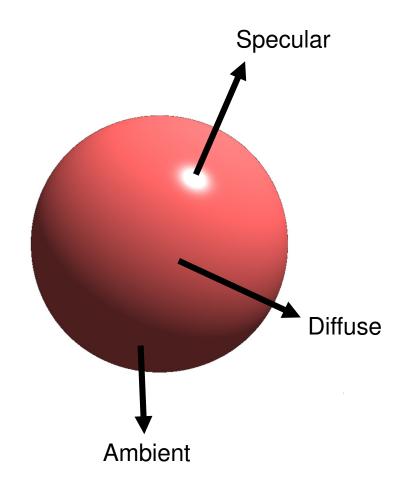

- Light interaction with one surface
 - Only considers direct reflection of the light from the source
 - Assuming the path between the light source and the surface is unblocked
- Pros: Fast
- Cons: Missing many effects
 - Shadow
 - Refraction
 - Multi-hop reflection


Global Illumination

- Light interaction with all surfaces
 - Reflection/refraction involving multiple surfaces
 - Considers shadows (when the path between the light source and surface is blocked)
 - Complete (*Umbra*) or incomplete (*Penumbra*)
- Pros: Realistic
- Cons: Expensive

Local vs. Global Illumination

Overview

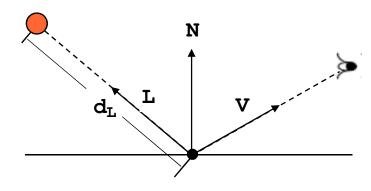

- Local illumination
 - Local lighting model (Today)
 - Drawing polygonal models (Thursday)
- Global illumination
 - Ray tracing (Friday)
 - Radiosity

Local Lighting Model

- Factors in computing reflected light:
 - Geometric configuration (between light source, surface and camera)
 - Light properties (source type, color, attenuation)
 - Surface material (color, shininess, etc.)
 - Others (polarization, fluorescence, phosphorescence, etc.)
- Lighting model: the math that computes reflected light
 - Physical model
 - Computes actual energy transmitted, very expensive
 - Non-physical model (OpenGL)
 - "Close enough", "looks good", but fast

Local Lighting Model

- Point light source
- Sum of three terms
 - Diffuse light
 - Diffusive reflection
 - Specular light
 - Highlights
 - Ambient light
 - Global, environment light

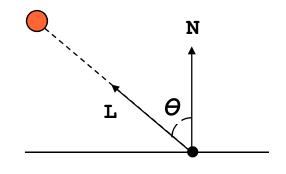

Parameters

Geometry

- Surface normal (unit vec): $N = \{N_x, N_y, N_z\}$
- Direction to light source (unit vec): $\mathbf{L} = \{ \mathbf{L}_x, \mathbf{L}_y, \mathbf{L}_z \}$
- Distance to light source: d_L
- Direction to camera: $V = \{V_x, V_y, V_z\}$

Light properties

- Color/Intensity: $I_L = \{I_L^r, I_L^g, I_L^b\}$
- Ambient light: $I_A = \{I_A^r, I_A^g, I_A^b\}$
- Attenuation coefficients: C₀, C₁, C₂

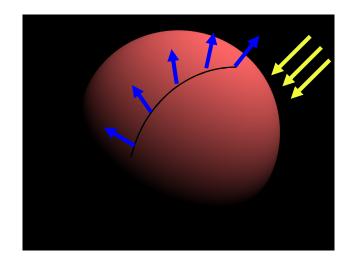

Surface material

- Diffuse coefficients: $\mathbf{k}_d = \{\mathbf{k}_d^r, \mathbf{k}_d^g, \mathbf{k}_d^b\}$
- Specular coefficients: $\mathbf{k_s} = \{\mathbf{k_s^r}, \mathbf{k_s^g}, \mathbf{k_s^b}\}$ and exponent: \mathbf{n}
- Ambient coefficients: $\mathbf{k}_a = \left\{ \mathbf{k}_a^r, \mathbf{k}_a^g, \mathbf{k}_a^b \right\}$

Diffuse Reflection

- Simulates reflection on matte surfaces
 - Independent of view direction
- Lambert's Cosine Law

$$I_{diff} = I_{L} k_{d} Cos[\theta] = I_{L} k_{d} (N \cdot L)$$
$$(\theta < \pi / 2, or N \cdot L \ge 0)$$

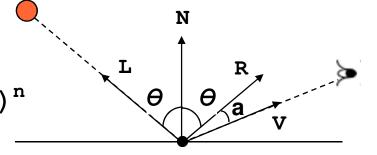


Compute for each color component :

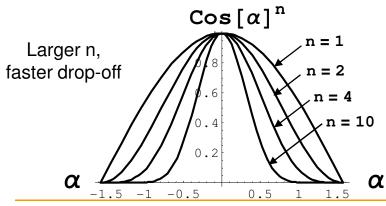
$$I_{diff}^{r} = I_{L}^{r} k_{d}^{r} (N \cdot L)$$

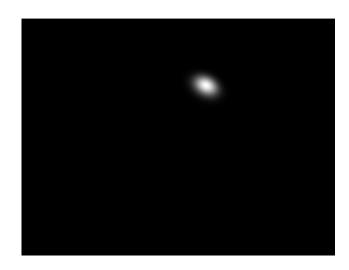
$$I_{diff}^{g} = I_{L}^{g} k_{d}^{g} (N \cdot L)$$

$$I_{diff}^{b} = I_{L}^{b} k_{d}^{b} (N \cdot L)$$



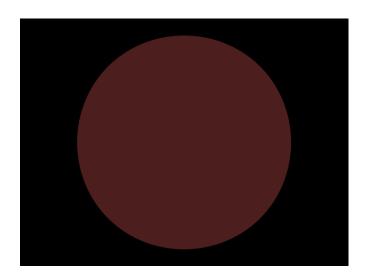
Specular Reflection


- Simulates highlight on shiny surfaces
 - Dependent on the viewing direction
- Phong's approximation


$$I_{spec} = I_L k_s Cos[\alpha]^n = I_L k_s (R \cdot V)^n$$

$$(N \cdot L \ge 0)$$

- R: reflected light direction
- n: specular exponent



Ambient Reflection

- Simulates global illumination
 - Lights bounced off other objects
- Constant light (a simple hack)

$$I_{amb} = I_A k_a$$

Light Attenuation

Simulates decrease of light energy over distance

$$I_L \leftarrow f_{att} I_L$$

- Does not affect ambient light
- Inverse square law of energy fall-off

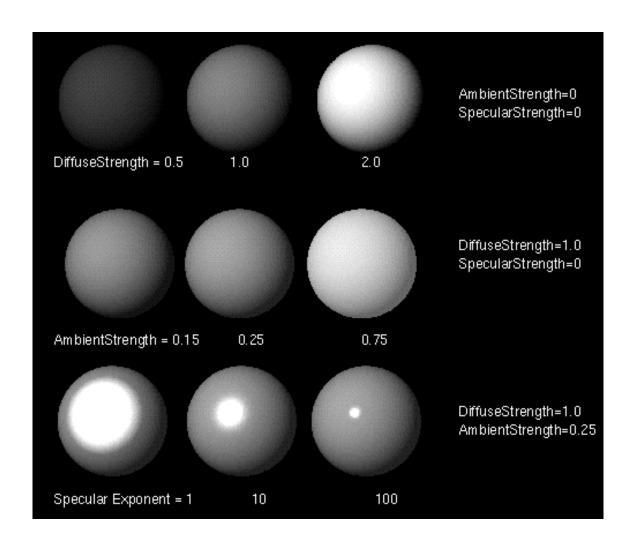
$$f_{att} = \frac{1}{d_L^2}$$

In practice

$$\mathbf{f}_{\text{att}} = \frac{1}{\mathbf{c}_0 + \mathbf{c}_1 \, \mathbf{d}_L + \mathbf{c}_2 \, \mathbf{d}_L^2}$$

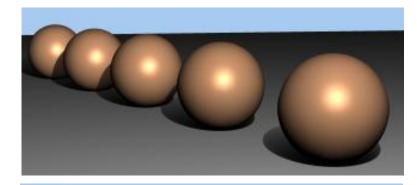
Putting Together

Local (OpenGL) lighting model

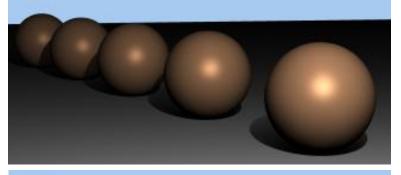

$$I = I_{amb} + I_{diff} + I_{spec}$$

$$= I_A k_a + I_L f_{att} (k_d (N \cdot L) + k_s (R \cdot V)^n)$$

Compute for each color component



Example: Varying Parameter



Example: Attenuation

No attenuation:

Linear attenuation:

Quadratic attenuation:

