CSC 321 Computer Graphics
Polygon Shading

CSC 321 Polygon Shading Slide 1

Review

Local lllumination Model (1-hop reflection only)

Non-physical model: “looks good”

Ambient, diffuse and specular components

-
+ + =

Ambient Diffuse

_\\

Specular

I

Lamb + Ldiff + Ispec

Inka+ Ip fare (kg (N-L) +ks (R-V)7)

CSC 321 Polygon Shading

Slide 2

Rendering Polygonal Models

Most scenes are modeled by polygons

CSC 321 Polygon Shading Slide 3

Drawing A Polygon

Compute location of polygon vertices on screen
Transformations

See if the whole or part of the polygon is visible
Visibility culling

Color each pixel in the visible part of the polygon

Polygonal shading

Texturing

CSC 321 Polygon Shading Slide 4

Computing Polygon Vertices

Object and camera transform

Object transformation (obtained from a scene graph)

Transformation matrix for 03:
M=m2 m4 m5

Camera transformation

World-to-camera, perspective transform

Combined:
{Xs, ¥s, 25, W} =CM({x, vy, z,)}
Normalized: Xs Vs Zg }
\N¢ 3w \w

CSC 321 Polygon Shading Slide 5

Visibility

Is the polygon visible?

View-volume clipping: do not draw the polygon if it completely lies
outside the view frustum

Clip against the 6 walls of the viewing volume

Back-face culling: do not draw the polygon if it faces “away” from
the viewer.

Take the dot product of the polygon normal and the look vector.
If positive, the polygon is back facing and not drawn

Orientation of the polygon becomes critical

What about occlusion?

CSC 321 Polygon Shading Slide 6

Occlusion culling

’ ’ the screen

{ Xs Vs Depth into
w w

* Painter’s algorithm
— Transform all polygons into screen coordinates
— Sort polygons by the minimum depth of its vertices

— Draw polygons from back to front

Image Souce: Wikipedia

|| e

Back Front

CSC 321 Polygon Shading Slide 7

Painter’s Algorithm

Problem

Can not properly show intersecting/tangling polygons

21 b
Tangling: A Intersecting: v ;
E

CSC 321 Polygon Shading Slide 8

Z-Buffer

Z-buffer (depth buffer): an array
storing the minimal depth at
each pixel

After transformation, depth ranges
from O (near plane) to 1 (far plane)

When multiple points projected
onto a same pixel, only the point
with a smaller depth is drawn.

CSC 321 Polygon Shading

Image Souce: Wikiiedia

A simple three dimensional scene

Z-buffer representation

Slide 9

Z-Buffer

Algorithm

Z-buffer Initialized to be 1 (far plane) for each pixel

Compute projected coordinates of the vertices and their depth

Scan-convert interior pixels of the polygon

Compute depth at each pixel by linear interpolation

Only draw the pixel (and update the z-buffer for that pixel) if the depth
of the pixel is smaller than what’s currently in the z-buffer

CSC 321

Scan line

ds

Polygon Shading

db =d1

Ys~- Y2
Yi- Y2

Yi- ¥s
Y1~ ¥2

+d2

Ys~- ¥3
Y1~ ¥3

Y1~ ¥s
Y1~ Y3

+d3

Xb- Xp xP- Xa

+ db

Xp = X3 Xp = X3

Slide 10

Better culling

* Discard occluded triangles before projection

i Scene
Taxburad

Image source: unity3d.com

CSC 321 Polygon Shading Slide 11

Better culling

Discard occluded triangles before projection

i Scene

Textured

Image source: unity3d.com

CSC 321 Polygon Shading Slide 12

Polygon Shading

Using local illumination model (for efficiency)

Compute one color per polygon (flat)
Compute one color per vertex (Gouraud)

Compute one color for each pixel (Phong)

CSC 321 Polygon Shading

Slide 13

Flat Shading

Image Souce: Tom Salter

Use one color for each polygon

. Pol
Pick any polygon vertex nortal

Vector 2

Use the (normalized) cross-product of
edge vectors as the normal

.] . Vector.1
Compute local illumination

Pros: Fastest

Cons: Facet-looking

Discontinuity across edges

CSC 321 Polygon Shading Slide 14

Gouraud Shading

Compute the color at each vertex
Use the average normal of the incident polygons

Blend the color within the polygon

Using linear interpolation
N, N,

N,

N1+N2+N3+N4 I'T |

N, = |

4 :\ N2 I|

i Ny

Image Souce: Tom Salter

Slide 15

CSC 321 Polygon Shading

Gouraud Shading

Scan-line algorithm (similar to z-buffer):
Compute projected coordinates and color at each vertex

Scan-convert interior pixels of the polygon

Compute color at each pixel by linear interpolation

A - 2 1-
I, =1, Ys- Y + I, Y Ys
Yi- Y2 Yi- Y2
- y3 1-
I = I, Ys= Y +13Y Ys
Yi- ¥3 Yi-Y¥3
Xp - X Xy - X
I,=1I, Py, 22
Xp = X3 Xp = X5

CSC 321 Polygon Shading Slide 16

Gouraud Shading

Pros: Smoother looking than flat shading
Color continuous across edges
Cons
Patchy, because color is not smooth (or derivative not continuous)

Details (e.g., highlight) missing within a polygon

Flat Gouraud
CSC 321 Polygon Shading Slide 17

Phong Shading

Using smoothly varying normals

Compute a normal for each scan-converted pixel

Linear interpolation of normals at the vertices (using scan-line)

Compute illumination

Using the interpolated normal and the location of the 3D point

CSC 321 Polygon Shading Slide 18

Phong Shading

Pros:

Smoother (“Faking” a smooth surface)

Gouraud Phong

CSC 321 Polygon Shading Slide 19

Phong Shading

Pros:

Smoother (“Faking” a smooth surface)

Capturing specular lighting inside the polygon

AN, Viewpoint
NC
Cross-section N \T Ny,

view I i -t . real surface

L =

= Y
\ polygonal

approximation

CSC 321 Polygon Shading Slide 20

Phong Shading

Pros:

Smoother (“Faking” a smooth surface)

Capturing specular lighting inside the polygon

Viewpoint
Cross-section Nh \T /‘ Ny,
view Al = e /. f. real surface
- L
P ﬂ
= \
L. p()lvg.,uudl
I y approximation
Gouraud
l 4 Highlight 1
a /| a——_] Highlight missec
- "
_' by Couraud shading
l ‘.\"-\IlJ
Phong

CSC 321 Polygon Shading Slide 21

Phong Shading

Pros:

Smoother (“Faking” a smooth surface)

Capturing specular lighting inside the polygon
Cons: much slower

OpenGL does not implement Phong

CSC 321 Polygon Shading

Slide 22

Summary

Flat shading
Compute local illumination once per polygon
Gouraud shading

Compute local illumination once per vertex

Interpolate color across the polygon
Phong shading

Interpolate normal across the polygon

Compute local illumination per pixel

CSC 321 Polygon Shading

Better-looking

i

Faster

Slide 23

Texture

Simple, effective approach for adding surface detail

Image Souce: Wikipedia

s e ".'_.._- ¥

Sphere with no texture Texture image Sphere with texture

CSC 321 Polygon Shading Slide 24

Texture Coordinates

Uses two parameters (u,v)
Each object point is associated with a pair (u,v) between 0 and 1

Given a texture image in the unit square, the object point is shaded
using the color at (u,v) on the texture image

u,v)=

(1,1)

2 . . '
(0,0) | (1,0)

CSC 321 Polygon Shading Slide 25

Texture Coordinates

* Uses two parameters (u,v)
— Each object point is associated with a pair (u,v) between 0 and 1

— @Given a texture image in the unit square, the object point is shaded
using the color at (u,v) on the texture image

(1,1)

(1,0)

CSC 321 Polygon Shading Slide 26

Texture Mapping

Find a texture image (the easy part)

Get texture coordinates for each point on the model (the
hard part)

First, find texture coordinates for each polygon vertex

Parameterization

Interpolate texture coordinates within each polygon

Using scan-line algorithm

CSC 321 Polygon Shading Slide 27

Mapping a Cylinder
Cylindrical parameterization

p[d, a] = {rCos[a], rSin[a], d}

0O<dz<h, 0<a<2r <:::

Normalize d, a to correct range. h

v

Q
Q.
X

CSC 321 Polygon Shading Slide 28

Mapping a Sphere

Longitude-latitude parameterization

pla, B] = {rCos[B] Cos[a], rCos[B] Sin[a], rSin[B]}
-JT JT

O<a<2n, — <B < —
2 2

Normalize a, b to correct range

a B+mw/2
u:—,V:
27T Tt

CSC 321 Polygon Shading Slide 29

What about arbitrary shapes?

* Mapping to a sphere
— Wrap the object in a sphere

— Use the u,v parameter of the projected point on

the sphere
Stage one: intersect ray with Stage two: calculate intersection
bounding sphere point’s uv-coords
ra ' ,
Y ” bounding
; sphere’s

uv-mapper
bounding sphere\

CSC 321 Polygon Shading Slide 30

What about arbitrary shapes?

Global parameterization

Minimizing distortions (e.g., preserving triangle angles or areas in the

UV domain)
Model Texture
U-V domain Textured
model

CSC 321 Polygon Shading Slide 31

What about arbitrary shapes?

Using a texture atlas

Cut the shape into different patches (manually or automatically) and

compute U,V coordinates for each patch

Give one texture image for each patch

Often used for characters/animals in games

Joe O’CONNOR-

CSC 321 Polygon Shading

Joe O'CONNOR-

Slide 32

Bump Mapping

“Fake geometry” by varying surface normal

The map encodes height variation (as grayscale), from which the normal
can be computed

Needs Phong shading to compute per-pixel lighting

Bump image

Image Souce: Wikipedia

CSC 321 Polygon Shading Slide 33

Normal Mapping

* “Fake geometry” by defining new normal at each point

— Encodes actual normal (X,Y,Z as R,G,B)

Texture image Normal image

CSC 321 Polygon Shading Slide 34

Bump & Normal Mapping

Limitation: cannot change the silhouette of the shape

Bump mapped Changed geometry

CSC 321 Polygon Shading Slide 35

