
CSC 321 Polygon Shading Slide 1

CSC 321 Computer GraphicsCSC 321 Computer Graphics

Polygon Shading

CSC 321 Polygon Shading Slide 2

ReviewReview

• Local Illumination Model (1-hop reflection only)

– Non-physical model: “looks good”

– Ambient, diffuse and specular components

+ + =

Ambient Diffuse Specular

I = Iamb + Idiff + Ispec

= IA ka + IL fatt Hkd HN ⋅ LL + ks HR ⋅ VLnL

CSC 321 Polygon Shading Slide 3

• Most scenes are modeled by polygons

Rendering Polygonal ModelsRendering Polygonal Models

CSC 321 Polygon Shading Slide 4

Drawing A PolygonDrawing A Polygon

• Compute location of polygon vertices on screen

– Transformations

• See if the whole or part of the polygon is visible

– Visibility culling

• Color each pixel in the visible part of the polygon

– Polygonal shading

– Texturing

CSC 321 Polygon Shading Slide 5

:xs
w
,
ys

w
,
zs

w
>

Computing Polygon VerticesComputing Polygon Vertices

• Object and camera transform

– Object transformation (obtained from a scene graph)

• Transformation matrix for o3:

– Camera transformation

• World-to-camera, perspective transform

– Combined:

• Normalized:

M = m2 m4 m5

C = D Sxyz Sxy R T

Screen

(X,Y)

8xs, ys, zs, w< = C M 8x, y, z, 1<
Depth into

the screen

CSC 321 Polygon Shading Slide 6

VisibilityVisibility

• Is the polygon visible?

– View-volume clipping: do not draw the polygon if it completely lies

outside the view frustum

• Clip against the 6 walls of the viewing volume

– Back-face culling: do not draw the polygon if it faces “away” from

the viewer.

• Take the dot product of the polygon normal and the look vector.

– If positive, the polygon is back facing and not drawn

• Orientation of the polygon becomes critical

– What about occlusion?

CSC 321 Polygon Shading Slide 7

Occlusion cullingOcclusion culling

• Painter’s algorithm

– Transform all polygons into screen coordinates

– Sort polygons by the minimum depth of its vertices

– Draw polygons from back to front

Back Front

Image Souce: Wikipedia

:xs
w
,
ys

w
,
zs

w
>

Depth into

the screen

CSC 321 Polygon Shading Slide 8

Painter’s AlgorithmPainter’s Algorithm

Tangling: Intersecting:
A

A

B

• Problem

– Can not properly show intersecting/tangling polygons

CSC 321 Polygon Shading Slide 9

Z-BufferZ-Buffer

• Z-buffer (depth buffer): an array

storing the minimal depth at

each pixel

– After transformation, depth ranges

from 0 (near plane) to 1 (far plane)

– When multiple points projected

onto a same pixel, only the point

with a smaller depth is drawn.

Image Souce: Wikipedia

CSC 321 Polygon Shading Slide 10

Z-BufferZ-Buffer

• Algorithm

– Z-buffer Initialized to be 1 (far plane) for each pixel

– Compute projected coordinates of the vertices and their depth

– Scan-convert interior pixels of the polygon

• Compute depth at each pixel by linear interpolation

– Only draw the pixel (and update the z-buffer for that pixel) if the depth

of the pixel is smaller than what’s currently in the z-buffer

y1

y2

y3

ys
Scan line

d1

d2

d3

dp

da db

da = d1
ys - y2

y1 - y2
+ d2

y1 - ys

y1 - y2

db = d1
ys - y3

y1 - y3
+ d3

y1 - ys

y1 - y3

dp = da
xb - xp

xb - xa
+ db

xp - xa

xb - xa

CSC 321 Polygon Shading Slide 11

Better cullingBetter culling

• Discard occluded triangles before projection

Image source: unity3d.com

CSC 321 Polygon Shading Slide 12

Better cullingBetter culling

• Discard occluded triangles before projection

Image source: unity3d.com

CSC 321 Polygon Shading Slide 13

Polygon ShadingPolygon Shading

• Using local illumination model (for efficiency)

– Compute one color per polygon (flat)

– Compute one color per vertex (Gouraud)

– Compute one color for each pixel (Phong)

Flat Shading Gouraud Shading Phong Shading

Image Souce: Tom Salter

CSC 321 Polygon Shading Slide 14

Flat ShadingFlat Shading

• Use one color for each polygon

– Pick any polygon vertex

– Use the (normalized) cross-product of

edge vectors as the normal

– Compute local illumination

• Pros: Fastest

• Cons: Facet-looking

– Discontinuity across edges

Image Souce: Tom Salter

CSC 321 Polygon Shading Slide 15

Gouraud ShadingGouraud Shading

• Compute the color at each vertex

– Use the average normal of the incident polygons

• Blend the color within the polygon

– Using linear interpolation

N2
N3

N1

N4

Nv

Image Souce: Tom Salter

Nv =
N1 + N2 + N3 + N4

4

CSC 321 Polygon Shading Slide 16

Gouraud ShadingGouraud Shading

• Scan-line algorithm (similar to z-buffer):

– Compute projected coordinates and color at each vertex

– Scan-convert interior pixels of the polygon

• Compute color at each pixel by linear interpolation

y1

y2

y3

ys
Scan line

Ia = I1
ys - y2

y1 - y2
+ I2

y1 - ys

y1 - y2

Ib = I1
ys - y3

y1 - y3
+ I3

y1 - ys

y1 - y3

Ip = Ia
xb - xp

xb - xa
+ Ib

xp - xa

xb - xa

I1

I2

I3

Ip

Ia Ib

CSC 321 Polygon Shading Slide 17

Gouraud ShadingGouraud Shading

• Pros: Smoother looking than flat shading

– Color continuous across edges

• Cons

– Patchy, because color is not smooth (or derivative not continuous)

– Details (e.g., highlight) missing within a polygon

Flat Gouraud

CSC 321 Polygon Shading Slide 18

Phong ShadingPhong Shading

• Using smoothly varying normals

– Compute a normal for each scan-converted pixel

• Linear interpolation of normals at the vertices (using scan-line)

– Compute illumination

• Using the interpolated normal and the location of the 3D point

y1

y2

y3

ys
Scan line

CSC 321 Polygon Shading Slide 19

Phong ShadingPhong Shading

• Pros:

– Smoother (“Faking” a smooth surface)

Gouraud Phong

CSC 321 Polygon Shading Slide 20

Phong ShadingPhong Shading

• Pros:

– Smoother (“Faking” a smooth surface)

– Capturing specular lighting inside the polygon

Nb

Na

Nc

c

Cross-section
view

CSC 321 Polygon Shading Slide 21

Phong ShadingPhong Shading

• Pros:

– Smoother (“Faking” a smooth surface)

– Capturing specular lighting inside the polygon

Nb

Na

Nc

c

Cross-section
view

CSC 321 Polygon Shading Slide 22

Phong ShadingPhong Shading

• Pros:

– Smoother (“Faking” a smooth surface)

– Capturing specular lighting inside the polygon

• Cons: much slower

– OpenGL does not implement Phong

CSC 321 Polygon Shading Slide 23

SummarySummary

• Flat shading

– Compute local illumination once per polygon

• Gouraud shading

– Compute local illumination once per vertex

– Interpolate color across the polygon

• Phong shading

– Interpolate normal across the polygon

– Compute local illumination per pixel

B
e
tt

e
r-

lo
o
k
in

g

F
a
s
te

r

CSC 321 Polygon Shading Slide 24

TextureTexture

• Simple, effective approach for adding surface detail

Sphere with no texture Sphere with textureTexture image

Image Souce: Wikipedia

+ =

CSC 321 Polygon Shading Slide 25

Texture CoordinatesTexture Coordinates

• Uses two parameters (u,v)

– Each object point is associated with a pair (u,v) between 0 and 1

– Given a texture image in the unit square, the object point is shaded

using the color at (u,v) on the texture image

(0,0)

(0,1)

(1,0)

(1,1) (u,v)=

(0.3,0.6)

CSC 321 Polygon Shading Slide 26

Texture CoordinatesTexture Coordinates

• Uses two parameters (u,v)

– Each object point is associated with a pair (u,v) between 0 and 1

– Given a texture image in the unit square, the object point is shaded

using the color at (u,v) on the texture image

(0,0)

(0,1)

(1,0)

(1,1) (u,v)=

(0.3,0.6)

CSC 321 Polygon Shading Slide 27

Texture MappingTexture Mapping

• Find a texture image (the easy part)

• Get texture coordinates for each point on the model (the

hard part)

– First, find texture coordinates for each polygon vertex

• Parameterization

– Interpolate texture coordinates within each polygon

• Using scan-line algorithm

CSC 321 Polygon Shading Slide 28

Mapping a CylinderMapping a Cylinder

• Cylindrical parameterization

– Normalize d, a to correct range.

r

h

X

Y

Z

a

d
u =

α

2 π
, v =

d

h

p@d, αD = 8r Cos@αD, r Sin@αD, d<
0 ≤ d ≤ h, 0 ≤ α < 2 π

CSC 321 Polygon Shading Slide 29

Mapping a SphereMapping a Sphere

• Longitude-latitude parameterization

– Normalize to correct range

r

X

Y

a

b

Z

a, b

u =
α

2 π
, v =

β + π ê2
π

p@α, βD = 8r Cos@βD Cos@αD, r Cos@βD Sin@αD, r Sin@βD<

0 ≤ α < 2 π,
−π

2
≤ β ≤

π

2

CSC 321 Polygon Shading Slide 30

What about arbitrary shapes?What about arbitrary shapes?

• Mapping to a sphere

– Wrap the object in a sphere

– Use the u,v parameter of the projected point on

the sphere

CSC 321 Polygon Shading Slide 31

What about arbitrary shapes?What about arbitrary shapes?

• Global parameterization

– Minimizing distortions (e.g., preserving triangle angles or areas in the

UV domain)

Model

U-V domain

Texture

Textured

model

CSC 321 Polygon Shading Slide 32

What about arbitrary shapes?What about arbitrary shapes?

• Using a texture atlas

– Cut the shape into different patches (manually or automatically) and

compute U,V coordinates for each patch

– Give one texture image for each patch

– Often used for characters/animals in games

CSC 321 Polygon Shading Slide 33

Bump MappingBump Mapping

• “Fake geometry” by varying surface normal

– The map encodes height variation (as grayscale), from which the normal

can be computed

• Needs Phong shading to compute per-pixel lighting

Image Souce: Wikipedia

+ =

Bump image

CSC 321 Polygon Shading Slide 34

Normal MappingNormal Mapping

• “Fake geometry” by defining new normal at each point

– Encodes actual normal (X,Y,Z as R,G,B)

+ =+

Texture image Normal image

CSC 321 Polygon Shading Slide 35

Bump & Normal MappingBump & Normal Mapping

• Limitation: cannot change the silhouette of the shape

Bump mapped Changed geometry

