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Lecture 2: Image Processing & Antialiasing
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 Midpoint algorithm: in each column, pick the 

pixel with the closest center to the line

 A form of point sampling: sample the line at each 

of the integer X values

 Pick a single pixel to represent the line’s intensity, 

full on or full off  

 Doubling resolution in x and y only lessens the 

problem, but costs 4 times memory, bandwidth, 

and scan conversion time!

Representing lines: Point sampling, single pixel

Approximating same line 
at 2x the resolution

Line approximation 
using point sampling
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 “Jaggies” an informal name for 
artifacts from poorly representing 
continuous geometry by a discrete 2D 
grid of pixels

 Jaggies are a manifestation of sampling 
error and loss of information (aliasing of 
high frequency components by low 
frequency ones)

Jaggies & Aliasing
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 Effect of jaggies can be reduced by 
anti-aliasing, which smoothes out the 
pixels around the jaggies by averaging

 Shades of gray instead of sharp 
black/white transitions

 Diminishes HVS’ response to sharp 
transitions

Jaggies & Aliasing
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 Represent the line as a unit width rectangle, use multiple pixels overlapping the 
rectangle (for now we think of pixels as squares)

 Instead of full on/off, calculate each pixel intensity proportional to the area covered 
by the unit rectangle

Representing lines: Area sampling
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 For each pixel intersecting the line, intensity 
contributed by each sub-area of intersection 𝑑𝐴
is 𝑾 𝑥, 𝑦 𝑑𝐴

 For box filer: 𝑾 𝑥, 𝑦 =1

 Then total intensity of the pixel (between 0 and 
1) integrated over area of overlap is: 

 
𝐴

𝑾 𝑥, 𝑦 𝑑𝐴

 For box filter: total area of overlap

“Box Filter” Represents Unweighted Area Sampling

𝑾
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 Box filter

 Local support: 1 pixel

 No color unless the pixel overlaps with primitive

 Unweighted integration

 Intensity indifferent of the location of primitive in the pixel

 Creating “winking” artifact when primitive moves across pixel boundaries

Unweighted Area Sampling

(b)

7/51



Courtesy of Andries van Dam©

 Area sampling, but the overlap between filter 

and primitive is weighted so 𝑾 𝑥, 𝑦 is greater 

when 𝑥, 𝑦 gets closer to pixel center

 Cone has:

 Linear falloff

 Circular symmetry

 Base width of 2 

 Intensity of pixel is the “subvolume” inside the 

cone over the line (see picture)

“Cone Filter” for Weighted Area Sampling
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𝑾
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(b)

 Cone filter

 Greater support: 2 pixels

 Greater smoothness in the changes of intensity

Weighted Area Sampling
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 Pyramid filter

 Support: 1 pixel

 Approximates circular cone to emphasize area of overlap close to center of pixel

Weighted Area Sampling

(b)
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 Scan converting an image is digitizing (sampling) a series of continuous 
intensity functions, one per scan line

 We will use single scan lines for simplicity, but everything still applies to 
images

Sampling of Images

Scan line from synthetic scene Scan line from natural scene
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The Sampling/Reconstruction/Display Pipeline – overview

Original continuous signal:
𝑢:ℝ → ℝ

Sampled signal:
𝑆: ℤ → ℝ: 𝑛 ⟼ 𝑢 𝑛

Reconstructed signal:
 𝑆: ℝ → ℝ

(many reconstruction methods)
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The Sampling/Reconstruction/Display Pipeline – overview
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Intuitively, the samples we have, the 
more accurate is our reconstruction.

But how many samples are 
sufficient?
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Sampling: The Nyquist Limit
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Original signal

Samples

Reconstruction
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Sampling: The Nyquist Limit

Original signal

Samples

Reconstruction
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 Sampling frequency must be

2 times more than

the highest frequency in the signal (the Nyquist limit). 

Sampling: The Nyquist Limit
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 Sampling right at the Nyquist limit 
can also be problematic:

Sampling: The Nyquist Limit
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Samples 1:

Samples 2:
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 Ever seen tires spin in a movie?  Have you ever noticed that sometimes, 
they seem to be spinning backwards?

Temporal Aliasing: Another Sampling Error 
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 Ever seen tires spin in a movie?  Have you ever noticed that sometimes, 
they seem to be spinning backwards?

 Its because the video frame-rate is lower than twice the frequency at 
which the wheels spin. This is temporal aliasing!

Temporal Aliasing: Another Sampling Error 
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The Sampling/Reconstruction/Display Pipeline – overview
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Intuitively, the samples we have, the 
more accurate is our reconstruction.

But how many samples are 
sufficient?
• 2x highest frequency

But what if the signal frequency is 
too high and we have a tight budget 
of samples?
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This doesn’t look right at all. There are no stripes and the image now has 
a blacker average intensity

Example Task: Down-sampling

Original Image
Image with sample 

points marked
Image scaled using 

point samples

25/51



Courtesy of Andries van Dam©

Remove the high frequency components, then sample

Pre-filtering (blurring), then down-sampling

Original Image
Prefiltered image with 

samples marked
Prefiltered image 

scaled
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How to fix this?

1/4

1/8

1/2
27/51

Without pre-filtering
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Subsampling with Gaussian pre-filtering

G 1/4

G 1/8

Gaussian 1/2

Solution:  filter the image, then subsample 28/51

With pre-filtering
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Low-Pass Filtering
to Eliminate High
Frequencies 
(shown for one scan line in 
Spatial Domain)
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 Think of an array as a function

 We take two arrays and generate a third

 We “slide” the filter along the other array and at each element, calculate a 
value by multiplying the pairs and summing the products to do the 
(weighted) averaging
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Discrete Convolution -- Review
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Blurring by Convolution with Gaussian

39
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230 200 180 30 40 50 180

20 30 40 50 10 80 80

160 150 130 180 200 190 150
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Image Blurred output
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Blurring by Convolution with Gaussian

40

30 80 70 40 50 50 60

40 40 80 120 200 180 130

50 50 70 80 90 20 20

230 200 180 30 40 50 180

20 30 40 50 10 80 80

160 150 130 180 200 190 150

30 80 90 100 80 20 10

Image Blurred output

62 71
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0.1 0.4 0.1

0.05 0.1 0.05
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Blurring by Convolution with Gaussian
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30 80 70 40 50 50 60

40 40 80 120 200 180 130

50 50 70 80 90 20 20

230 200 180 30 40 50 180

20 30 40 50 10 80 80

160 150 130 180 200 190 150

30 80 90 100 80 20 10

Image Blurred output

62 71 102
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Blurring by Convolution with Gaussian
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30 80 70 40 50 50 60

40 40 80 120 200 180 130

50 50 70 80 90 20 20

230 200 180 30 40 50 180

20 30 40 50 10 80 80

160 150 130 180 200 190 150

30 80 90 100 80 20 10

Image Blurred output

62 71 102 98
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Blurring by Convolution with Gaussian
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30 80 70 40 50 50 60

40 40 80 120 200 180 130

50 50 70 80 90 20 20

230 200 180 30 40 50 180

20 30 40 50 10 80 80

160 150 130 180 200 190 150

30 80 90 100 80 20 10

Image Blurred output

62 71 102 98 50

20 10 10 70 0

20 -150 10 10 130

10 10 40 70 0

20 50 20 10 40

(Values in the output are fake.)
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Gradient along X

Gradient along Y

Convolution for edge detection
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Gradient along X

Gradient along Y

Convolution with
[-0.5, 0, 0.5]

Convolution with
-0.5

0
0.5


