CSC 321 Computer Graphics

Projection

A painting based on a mythical tale as told by Pliny the Elder

Planar Geometric Projection

Classification of Projections

Perspective Projection

Parallel Projection

Parallel Projections

- Preserves object size
 - Edges parallel to projection plane maintain their lengths after projection
- Preserves parallelism
 - Lines that are parallel stay parallel after projection

Types of Parallel Projection

- Orthographic projection
 - Projectors orthogonal to the view plane

- Oblique projection
 - Projectors not orthogonal to the view plane

Types of Parallel Projection

Multi-view Orthographic Projection

Projection plane is one of coordinate planes

"3D Max" software interface

Axonometric Orthographic Projections

Projection plane is not one of coordinate planes

Oblique Projections

- Projectors **not** orthogonal to projection plane
 - The projection plane is typically parallel to a face of the object
- Classified by the angle between projector and plane
 - Pi/4: Cavalier type
 - Preserves the lengths of edges orthogonal to projection plane
 - ArcTan(2): Cabinet type
 - Halves the lengths of edges orthogonal to projection plane

Cavalier: 45 degree

Cabinet: arctan(2) =63.4 degree

Examples of Parallel Projections

Parallel Projection in Drawing

Earliest known technical drawing: Plan view (orthographic projection) from Mesopotamia, 2150 BC

Perspective Projections

- How our eyes see the world
 - Objects further away look smaller (foreshortening)
 - Parallel lines may not remain parallel

Vanishing Points

- Perspective projection of a group of parallel lines intersects at a single vanishing point
 - Unless the group is parallel to the projection plane
- Why?

- 1. Find P on the viewing plane so that **PE is parallel to AB**
- 2. P,A',B' lie on the same line, because of these facts:
 - 1. A,B,P,E defines a plane.
 - 2. P,A',B' all lie on the plane of ABPE
 - 3. P,A',B' also lie on the viewing plane.
 - P,A',B' all lie on the intersecting line between viewing plane and the plane of ABPE.

Similarly, P,C',D' are **co-linear** for any CD parallel to PE.

Conclusion: P is the vanishing
point (unless AB is parallel to
the viewing plane, in which case
P does not exist)

Types of Perspective Projections

- Based on number of vanishing points for lines parallel to the three coordinate axes
 - Determined by # of axes parallel to the viewing plane

A unit cube:

One-point Perspective (view plane parallel to 2 axes)

Two-point Perspective (view plane parallel to 1 axis)

Three-point Perspective (view plane not parallel to any axis)

Giotto, Franciscan Rule Approved, 1295-1300

Leonardo da Vinci, **The Last Supper**, 1495–1498

Jan Vermeer, **The Music Lesson**, 1662

3D Reconstruction of The Music Lesson

Classification of Projections

Classification of Projections

CSC 321 Computer Graphics

Computer Projection 1

Review

- In the last lecture
 - Definition: view point, view plane, projectors

- Types of projection
 - Parallel (orthographic, oblique): parallel projectors (COP at infinity)
 - Perspective: projectors as rays from COP

Review

- In the last lecture
 - Geometric construction of Vanishing Points in perspective projection
 - For parallel lines in the direction
 v
 - Vanishing point after projection is the intersection of viewing plane with the ray from eye in the direction v

Preview

- In this lecture (and next)
 - How to perform projection in the computer? Or, given a point in 3D, where do I draw it on the 2D computer screen?

World Coordinate: $\{x_w, y_w, z_w\}$

Screen Coordinate: {xs, ys}

Virtual Camera

- Programmer's reference model
- General parameters
 - Position of camera
 - Orientation
 - Field of view (wide angle, telephoto)
 - Clipping plane (near distance, far distance)
 - Perspective or parallel projection?

 - Tilt of view/film plane (for oblique views)

Position

- From where the camera is
 - Like a photographer choosing the vantage point to shoot a photo
- Any 3D point $P = \{p_x, p_y, p_z\}$
 - Use right-hand rule for coordinate axes
 - Align right hand fingers with +X axis
 - Curl fingers towards +Y axis
 - Your thumb points towards +Z axis

Orientation – Look Vector

- Where the camera is looking
- Any 3D vector $L = \{l_x, l_y, l_z\}$
 - Not necessarily a unit vector
- Look vector alone is not sufficient to describe orientation...

Orientation – Up Vector

- How the camera is rotated around the look vector
 - If you are holding the camera horizontally or vertically, or in between.
- Any 3D vector $\mathbf{U} = \{\mathbf{u}_x, \mathbf{u}_y, \mathbf{u}_z\}$
 - Not necessarily orthogonal to look vector L
 - Actual "Up-right" direction, U', is:

$$U' = U - \frac{U \cdot L}{L \cdot L} * L$$

(projecting U onto the plane orthogonal to L)

Default Position, Orientation

- Camera at origin, looking down –Z axis, and in upright pose
 - E.g., in OpenGL

$$P = \{0, 0, 0\}$$
 $L = \{0, 0, -1\}$
 $U = \{0, 1, 0\}$

Viewing Angle

- Describes the field of view
 - Like choosing a specific type of lens, e.g., a wide-angle lens or telephoto lens
- Width and height angles $\theta_{\rm w}$, $\theta_{\rm h}$
 - Assuming the view region is a rectangle

Viewing Angle

- Determines amount of perspective distortion
 - Small angles result in near-parallel projectors, hence little distortion
 - Large angles result in widely varying projectors with large distortion

 When keeping the size of the main object in view, longer distances gives narrower view angle

Close-up (wide angle)

Far away (narrow angle)

Close-up (wide angle)

Far away (narrow angle)

Close-up (wide angle)

Far away (narrow angle)

- Fun example: dolly-zoom effect (or "Hitchcock zoom")
 - Moves away the camera and shrinks the viewing angle at the same time, so that the main subjects stays the same size on screen
 - The background gets "closer", and perspective distortion lessens

- Aspect Ratio α
 - Ratio of width over height of the screen
 - 1:1 (square)
 - 4:3 (NTSC)
 - 16:9 (HDTV)
 - 2.35:1 (Widescreen Films)

$$\theta_{\rm w} = 2 \operatorname{ArcTan} \left[\operatorname{Tan} \left[\frac{\theta_{\rm h}}{2} \right] * \alpha \right]$$

Clipping Planes

- Restricts visible volume between near and far clipping planes
 - Objects closer than the near plane or further than the far plane are not drawn
 - Objects intersecting the two planes are clipped
- Defined as distances d_n , d_f from camera along look vector

Clipping Planes

- Why do we need near plane
 - Avoid drawing things too close to camera
 - They will appear with large distortion, and may block view
 - Avoid drawing things behind the camera
 - They will appear upside-down and inside-out
- Why do we need far plane
 - Avoid drawing things too far away
 - They will complicate the scene
 - They appear small on the screen anyway
 - Saving rendering time

Perspective Camera Model

Perspective Camera Model

View frustum: a truncated pyramid region that the camera can "see"

Orthographic Camera Model

- Width w and height h replace viewing angles
 - Both width angle and height angle are effectively zero

Film Plane and Viewport

- Film Plane
 - Any plane parallel to the near/far clipping planes.
- Viewport
 - A rectangular region on the screen displaying what's projected on the film plane (may have different aspect ratio as the film plane)

Film Plane and Viewport

 No matter where the film plane is, the final image shown in the viewport is the same!

What next?

- Three steps
 - Clipping: removes geometry outside the frustum
 - Projecting: transforms 3D coords. to 2D coords. on the film plane
 - Viewport transformation: gets pixel coordinate in the viewport

Focal length

- Approximates behavior of real camera lens
 - Objects at distance of focal length from camera are rendered in focus;
 other objects get blurred
- Focal length used in conjunction with clipping planes
 - Only objects within view volume are rendered, whether blurred or not.

Focal length

Rendering with focal blur

Focal length

Focal blur can serve as a cue for depth and (even) size

Held et al., "Making Big Things Look Small: Blur combined with other depth cues affects perceived size and distance", 2008

Oblique projection

Look vector not perpendicular to film plane

Non-oblique view volume:

Look vector is perpendicular to film plane

Oblique view volume:

Look vector is at an angle to the film plane

Nikon PC-E Nikkor 24mm Tilt/Shift lens

CSC 321 Computer Graphics

Computer Projection 2

Review

- In the last lecture
 - We set up a Virtual Camera
 - Position
 - Orientation
 - Clipping planes
 - Viewing angles
 - Orthographic/Perspective
- We are ready to project!

Preview

3D world-coordinate output primitives

Preview

- The perspective view frustum (i.e., a truncated pyramid) is non-trivial to clip against
 - We first transform the frustum to a canonical volume

Canonical View Volume

Canonical View Volume

- Canonical view volume makes things easy:
 - Easy clipping: Clip against the coordinates range

$$-1 \le x \le 1, -1 \le y \le 1$$

 $0 \le z \le 1$

 Easy projecting: drop the Z coordinate! (because viewing plane is the XY plane, and projectors are parallel to Z axis)

Viewing Transformation

- The transformation that warps the perspective frustum to the canonical view volume
 - Transforms world coordinates $\{x_w, y_w, z_w\}$ into canonical coordinates $\{x_c, y_c, z_c\}$

- First, let's setup a coordinate system for the camera
 - Origin at the camera
 - Three axes: right (u), straight-up (v), negative look (n)
 - Unit vectors forming an orthonormal, right-hand basis

- Computing n
 - Opposite to look vector L, normalized

$$n = \frac{-L}{|L|}$$

- Computing v
 - Projection of up vector U onto the camera plane, normalized

$$v' = U - (U \cdot n) * n$$

$$v = \frac{v'}{|v'|}$$

- Computing u
 - Cross product of v and n

$$u = v \times n$$

Summary

Three axes, computed from look vector L and up vector U:

$$n = \frac{-L}{|L|}$$

$$v = \frac{U - (U \cdot n) * n}{|U - (U \cdot n) * n|}$$

$$u = v \times n$$

"Camera coordinate system"

Computing Viewing Transformation

- Two steps
 - Step 1: align camera coordinate system P,u,v,n with world coordinate system O,X,Y,Z
 - Step 2: scale and stretch the frustum to the cuboid
- As a product of transformation matrices
 - Using homogenous coordinates

Step 1

- First, translate the eye point P to the origin
 - Let P have coordinates (p_x,p_y,p_z)

$$\mathbf{T} = \begin{pmatrix} 1 & 0 & 0 & -\mathbf{p_x} \\ 0 & 1 & 0 & -\mathbf{p_y} \\ 0 & 0 & 1 & -\mathbf{p_z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Then, rotate the three axes u,v,n to X,Y,Z
 - Let's set up the equation to solve for the rotation matrix (R):
 - Note the homogenous coordinates for a vector ends with 0!

In matrix form:

$$\mathbf{R} \cdot \begin{pmatrix} \mathbf{u_x} & \mathbf{v_x} & \mathbf{n_x} & \mathbf{0} \\ \mathbf{u_y} & \mathbf{v_y} & \mathbf{n_y} & \mathbf{0} \\ \mathbf{u_z} & \mathbf{v_z} & \mathbf{n_z} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

This is a matrix inversion problem:

$$\mathbf{R} = \mathbf{M}^{-1} \quad \text{where} \quad \mathbf{M} = \begin{pmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Since M is an orthonormal matrix:

$$R = M^{T}$$

Step 1 - Done

Eye point at origin, looking down negative z axis

Step 2

- Some preparations
 - First, make width/height angles to be $\pi/2$
 - Non-uniform scaling in X,Y coordinates

$$S_{xy} = \begin{pmatrix} \text{Cot} \left[\frac{\theta_w}{2} \right] & 0 & 0 & 0 \\ 0 & \text{Cot} \left[\frac{\theta_h}{2} \right] & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

A look down the X axis

- Some preparations
 - Next, push the far plane from Z=-d_f to Z=-1
 - Uniform scaling in all three coordinates

$$S_{xyz} = \begin{pmatrix} \frac{1}{d_f} & 0 & 0 & 0 \\ 0 & \frac{1}{d_f} & 0 & 0 \\ 0 & 0 & \frac{1}{d_f} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Where we are now:

A look down the X axis (same picture when looking down Y)

- Perspective transformation
 - Stretching and flipping the truncated pyramid to the cuboid
 - Change Z range: ([-d_n/d_f,-1] -> [0,1])
 - Stretch in XY plane: Non-uniform stretching based on z

Perspective transformation

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{k-1} & \frac{k}{k-1} \\ 0 & 0 & -1 & 0 \end{pmatrix}, \quad \text{where } k = \frac{d_n}{d_f}$$

Applying D to homogeneous coordinates:

D · {x, y, z, 1} =
$$\left\{x, y, \frac{k}{-1+k} + \frac{z}{-1+k}, -z\right\}$$

 Converting from homogeneous coordinates {x,y,z,w} to Cartesian coordinates (divide x,y,z by w)

$$\left\{\frac{-x}{z}, \frac{-y}{z}, \frac{k+z}{z(1-k)}\right\}$$

Perspective transformation

Putting Together

- Translation: T
- Rotation: R
- Scaling: Sxy, Sxyz

transformation

Perspective transformation:

World-to-camera

Putting Together

 Complete viewing transformation to bring a point q to the canonical volume:

$$q' = D S_{xyz} S_{xy} R T q$$

Clipping

- After transformation into the canonical volume, each object will be clipped against 6 cuboid faces.
 - Point clipping: checking coordinates range

$$-1 \le x \le 1$$
, $-1 \le y \le 1$, $0 \le z \le 1$

- Edge clipping: computing line/plane intersections
 - We will discuss a 2D version in next lecture.

Triangle clipping: can be done by line/plane intersections

Projecting

- Dropping z coordinate
 - Resulting points have range:

$$-1 \le x \le 1, -1 \le y \le 1$$

Viewport Transform

- Get viewport (pixel) coordinates
 - Viewport coordinate {0,0} is at top-left corner

If the viewport is a pixels wide and b pixels high, what is the pixel coordinates for a projected point {x,y}?

$$\left\{ \frac{(a-1)(x+1)}{2}, \frac{(b-1)(1-y)}{2} \right\}$$