
CSC 321 Computer Graphics 

Projection 



A painting based on a mythical tale as told by Pliny the Elder 



Planar Geometric Projection 

A A’ 



Perspective Projection Parallel Projection 

Classification of Projections 



Parallel Projections 

• Preserves object size 

– Edges parallel to projection plane maintain their 

lengths after projection 

• Preserves parallelism 

– Lines that are parallel stay parallel after projection 



Types of Parallel Projection 

• Orthographic projection 

– Projectors orthogonal to the view 

plane 

 

 

• Oblique projection 

– Projectors not orthogonal to the 

view plane 

 

 



Types of Parallel Projection 

Orthographic 

Oblique 



Multi-view Orthographic Projection 

• Projection plane is one of coordinate planes 

 

“3D Max” software interface 



Axonometric Orthographic Projections 

• Projection plane is not one of coordinate planes 

 

Isometric Dimetric 



Oblique Projections 

• Projectors not orthogonal to 

projection plane 

– The projection plane is typically 

parallel to a face of the object 

 

• Classified by the angle 

between projector and plane 
• Pi/4: Cavalier type 

– Preserves the lengths of edges 

orthogonal to projection plane 

• ArcTan(2): Cabinet type 

– Halves the lengths of edges 

orthogonal to projection plane 

 

Cavalier: 45 degree 

Cabinet: arctan(2) =63.4 degree 



Examples of Parallel Projections 



Parallel Projection in Drawing 

Earliest known technical drawing: Plan view (orthographic projection) from 

Mesopotamia, 2150 BC 



Perspective Projections 

• How our eyes see the world 

– Objects further away look smaller (foreshortening) 

– Parallel lines may not remain parallel 

 



Vanishing Points 

• Perspective projection of a group of parallel 

lines intersects at a single vanishing point 

– Unless the group is parallel to the projection plane 

 

• Why? 



Viewing Plane
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Viewpoint 

3D line 



Viewing Plane

B'
A'

A

B

P

E

1. Find P on the viewing plane so 

that PE is parallel to AB 

2. P,A’,B’ lie on the same line, 

because of these facts:  

1. A,B,P,E defines a plane. 

2. P,A’,B’ all lie on the plane 

of ABPE 

3. P,A’,B’ also lie on the 

viewing plane. 

4. P,A’,B’ all lie on the 

intersecting line 

between viewing plane 

and the plane of ABPE. 

Viewpoint 

3D line 



Viewing Plane

D'
C'

B'
A'

A

B

C

D

P

E

Similarly, P,C’,D’ are co-linear for 

any CD parallel to PE. 

 

Conclusion: P is the vanishing 

point (unless AB is parallel to 

the viewing plane, in which case 

P does not exist) 

Viewpoint 



Types of Perspective Projections 

• Based on number of vanishing points for lines parallel 

to the three coordinate axes 

– Determined by # of axes parallel to the viewing plane 

One-point Perspective 
(view plane parallel to 2 axes) 

Two-point Perspective 
(view plane parallel to 1 axis) 

Three-point Perspective 
(view plane not parallel to any axis) 

A unit cube: 



Giotto, Franciscan Rule Approved, 1295-1300  



Leonardo da Vinci, The Last Supper, 1495–1498 

http://upload.wikimedia.org/wikipedia/commons/0/08/Leonardo_da_Vinci_%281452-1519%29_-_The_Last_Supper_%281495-1498%29.jpg


Jan Vermeer, The Music Lesson, 1662 

http://upload.wikimedia.org/wikipedia/commons/4/49/Jan_Vermeer_van_Delft_014.jpg


http://upload.wikimedia.org/wikipedia/commons/4/49/Jan_Vermeer_van_Delft_014.jpg


3D Reconstruction of The Music Lesson 



Classification of Projections 



Classification of Projections 
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CSC 321 Computer GraphicsCSC 321 Computer Graphics

Computer Projection 1
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ReviewReview

• In the last lecture

– Definition: view point, view plane, projectors

– Types of projection

• Parallel (orthographic, oblique): parallel projectors (COP at infinity)

• Perspective: projectors as rays from COP
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ReviewReview

• In the last lecture

– Geometric construction of 

Vanishing Points in perspective 

projection

• For parallel lines in the direction 

v

• Vanishing point after projection 

is the intersection of viewing 

plane with the ray from eye in 

the direction v

Viewing Plane

D'
C'

B'
A'

A

B

C

D

P

E
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PreviewPreview

• In this lecture (and next)

– How to perform projection in the computer? Or, given a 

point in 3D, where do I draw it on the 2D computer screen?

?

World Coordinate:

Screen Coordinate:

8xw, yw, zw<

8xs, ys<
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Virtual CameraVirtual Camera

• Programmer’s reference model 

• General parameters

– Position of camera

– Orientation

– Field of view (wide angle, telephoto)

– Clipping plane (near distance, far distance)

– Perspective or parallel projection? 

– Focal distance

– Tilt of view/film plane (for oblique views)
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PositionPosition

• From where the camera is

– Like a photographer choosing the vantage point to shoot a photo

• Any 3D point

– Use right-hand rule for coordinate axes

• Align right hand fingers with +X axis

• Curl fingers towards +Y axis

• Your thumb points towards +Z axis

P = 8px, py, pz<

P
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Orientation – Look VectorOrientation – Look Vector

• Where the camera is looking

• Any 3D vector

– Not necessarily a unit vector

• Look vector alone is not sufficient to describe orientation…

L = 8lx, ly, lz<

P

L
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Orientation – Up VectorOrientation – Up Vector

• How the camera is rotated around the look vector

– If you are holding the camera horizontally or vertically, or in 

between.

• Any 3D vector

– Not necessarily orthogonal to look vector L

– Actual “Up-right” direction, U’, is:

U = 8ux, uy, uz<

P

L

U
U’

U' = U −
U ⋅ L

L ⋅ L
∗ L

(projecting U onto the plane orthogonal to L)
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• Camera at origin, looking down –Z axis, and in upright pose

– E.g., in OpenGL

Default Position, OrientationDefault Position, Orientation

+X

+Y

+Z

-Z

ScreenP = 80, 0, 0<
L = 80, 0, −1<
U = 80, 1, 0<

U

P

L
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• Describes the field of view

– Like choosing a specific type of lens, e.g., a wide-angle lens or 

telephoto lens

• Width and height angles

– Assuming the view region is a rectangle

Viewing AngleViewing Angle

θw, θh

Width angle Height angle

θw θh
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Viewing AngleViewing Angle

• Determines amount of perspective distortion

– Small angles result in near-parallel projectors, hence little distortion

– Large angles result in widely varying projectors with large distortion 

telephoto lens

wide-angle lens
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Viewing AngleViewing Angle

• When keeping the size of the main object in view, longer 

distances gives narrower view angle

Close-up (wide angle) Far away (narrow angle)
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Viewing AngleViewing Angle

Close-up (wide angle) Far away (narrow angle)
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Viewing AngleViewing Angle

Close-up (wide angle) Far away (narrow angle)
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Viewing AngleViewing Angle

• Fun example: dolly-zoom 

effect (or “Hitchcock zoom”)

– Moves away the camera and 

shrinks the viewing angle at 

the same time, so that the 

main subjects stays the 

same size on screen

– The background gets 

“closer”, and perspective 

distortion lessens
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Viewing AngleViewing Angle

• Aspect Ratio

– Ratio of width over height of the screen

• 1:1 (square)

• 4:3 (NTSC)

• 16:9 (HDTV)

• 2.35:1 (Widescreen Films)

• Width angle as aspect ratio and height angle

– Compute width angle:

h

h*aθw ê 2
θh ê 2

θw = 2 ArcTanBTanBθh

2
F ∗ αF

α
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Clipping PlanesClipping Planes

• Restricts visible volume between near and far clipping planes

– Objects closer than the near plane or further than the far plane are not drawn

– Objects intersecting the two planes are clipped

• Defined as distances              from camera along look vectordn, df
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Clipping PlanesClipping Planes

• Why do we need near plane

– Avoid drawing things too close to camera

• They will appear with large distortion, and may block view

– Avoid drawing things behind the camera

• They will appear upside-down and inside-out

• Why do we need far plane

– Avoid drawing things too far away

• They will complicate the scene

• They appear small on the screen anyway

• Saving rendering time
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Perspective Camera ModelPerspective Camera Model
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Perspective Camera ModelPerspective Camera Model

• View frustum: a truncated pyramid region that the camera can “see”

P

U L

dn

df

θw

θh
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Orthographic Camera ModelOrthographic Camera Model

• Width w and height h replace viewing angles

– Both width angle and height angle are effectively zero

P

U

L
dn

df

w

h

w = h*a
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Film Plane and ViewportFilm Plane and Viewport

• Film Plane

– Any plane parallel to the near/far clipping planes.

• Viewport

– A rectangular region on the screen displaying what’s projected on 
the film plane (may have different aspect ratio as the film plane)

Near 
plane

Far
plane

Film 

plane

Viewport
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Film Plane and ViewportFilm Plane and Viewport

• No matter where the film plane is, the final image shown in 
the viewport is the same!

Near 
plane

Far
plane

Film 

plane

Viewport
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What next?What next?

• Three steps

– Clipping: removes geometry outside the frustum

– Projecting: transforms 3D coords. to 2D coords. on the film plane

– Viewport transformation: gets pixel coordinate in the viewport
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Other Camera ModelsOther Camera Models

• Focal length

– Approximates behavior of real camera lens

• Objects at distance of focal length from camera are rendered in focus; 

other objects get blurred

– Focal length used in conjunction with clipping planes

• Only objects within view volume are rendered, whether blurred or not. 
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Other Camera ModelsOther Camera Models

• Focal length

Rendering with focal blur
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Other Camera ModelsOther Camera Models

• Focal length

– Focal blur can serve as a cue for depth and (even) size

Held et al., "Making Big Things Look Small: Blur combined with other depth cues affects perceived size and distance“, 2008
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Other Camera ModelsOther Camera Models

• Oblique projection

– Look vector not perpendicular to film plane

Nikon PC-E Nikkor 24mm Tilt/Shift lens
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CSC 321 Computer GraphicsCSC 321 Computer Graphics

Computer Projection 2
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ReviewReview

• In the last lecture

– We set up a Virtual Camera

• Position

• Orientation

• Clipping planes

• Viewing angles

• Orthographic/Perspective

• We are ready to project!

P

U L

dn

df

θw

θh

P

U

L
dn

df
w

h
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PreviewPreview

Near 

plane

Far

plane

Film 
plane

Viewp
ort
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PreviewPreview

• The perspective view frustum (i.e., a truncated pyramid) is non-trivial 
to clip against

– We first transform the frustum to a canonical volume
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Canonical View VolumeCanonical View Volume

Far Clipping 

Plane

Near Clipping 

Plane

Projectors (parallel to Z)

{-1,1,1} {-1,1,0}

{1,1,0}{1,1,1}

{-1,-1,1}

{1,-1,0}{1,-1,1}

X

Y

Z
2

2

1
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Canonical View Volume Canonical View Volume 

• Canonical view volume makes things easy:

– Easy clipping: Clip against the coordinates range

– Easy projecting: drop the Z coordinate! (because viewing plane is 

the XY plane, and projectors are parallel to Z axis)

Coordinates in the 

canonical volume

Projected 2D coordinates

−1 ≤ x ≤ 1, −1 ≤ y ≤ 1

0 ≤ z ≤ 1

8xc, yc, zc<

8xc, yc<

X

Y

Z

2

2

1
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Viewing TransformationViewing Transformation

• The transformation that warps the perspective frustum to 

the canonical view volume

– Transforms world coordinates {xw,yw,zw} into canonical coordinates 

{xc,yc,zc}

P

U L

dn

df

θw

θh

X

Y

Z

2

2

1

{xw,yw,zw}

{xc,yc,zc}
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Camera Coordinate SystemCamera Coordinate System

• First, let’s setup a coordinate system for the camera

– Origin at the camera

– Three axes: right (u), straight-up (v), negative look (n)

• Unit vectors forming an orthonormal, right-hand basis

v

n

u
P

L

U

L
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Camera Coordinate SystemCamera Coordinate System

• Computing n

– Opposite to look vector L, normalized

n

P

LL

n =
−L

L
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v U

Camera Coordinate SystemCamera Coordinate System

• Computing v

– Projection of up vector U onto the camera plane, normalized

n

P

LL

v' = U − HU ⋅ nL ∗ n

v =
v'

v'
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Camera Coordinate SystemCamera Coordinate System

• Computing u

– Cross product of v and n

v

n

u
P

L

U

L

u = v × n
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Camera Coordinate SystemCamera Coordinate System

• Summary

– Three axes, computed from look vector L and up vector U:

– u,v,n form a right-hand coordinate basis

• “Camera coordinate system”

v

n

u
P

L

U

L

v =
U − HU ⋅ nL ∗ n

U − HU ⋅ nL ∗ n

n =
−L

L

u = v × n
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Computing Viewing TransformationComputing Viewing Transformation

• Two steps

– Step 1: align camera coordinate system P,u,v,n with world coordinate 

system O,X,Y,Z

– Step 2: scale and stretch the frustum to the cuboid

• As a product of transformation matrices 

– Using homogenous coordinates

X

Y

Z

2

2

1

(u)

(v)

(n)
(P)
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Step 1Step 1

• First, translate the eye point P to the origin

– Let P have coordinates (px,py,pz)

O (P)

T =

1 0 0 −px
0 1 0 −py

0 0 1 −pz
0 0 0 1
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Step 1 (cont)Step 1 (cont)

• Then, rotate the three axes u,v,n to X,Y,Z

– Let’s set up the equation to solve for the rotation matrix (R): 

• Note the homogenous coordinates for a vector ends with 0!

– In matrix form:

R ⋅ u = 81, 0, 0, 0<
R ⋅ v = 80, 1, 0, 0<
R ⋅ n = 80, 0, 1, 0<
R ⋅ 80, 0, 0, 1< = 80, 0, 0, 1<

R ⋅

ux vx nx 0

uy vy ny 0

uz vz nz 0

0 0 0 1

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Step 1 (cont)Step 1 (cont)

• This is a matrix inversion problem:

• Since M is an orthonormal matrix:

R = M−1 where M =

ux vx nx 0

uy vy ny 0

uz vz nz 0

0 0 0 1

R = MT
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Step 1 - DoneStep 1 - Done

• Eye point at origin, looking down negative z axis

X

Y

Z

2

2

1

(u)

(v)

(n)
(P)
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Step 2Step 2

• Some preparations 

– First, make width/height angles to be π/2

• Non-uniform scaling in X,Y coordinates

Z

Y

h2

h1
= CotBθh

2
F

θh

A look down the X axis

Sxy =

CotA θw

2
E 0 0 0

0 CotA θh

2
E 0 0

0 0 1 0

0 0 0 1
h2

h1
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Step 2 (cont)Step 2 (cont)

• Some preparations

– Next, push the far plane from Z=-df to Z=-1

• Uniform scaling in all three coordinates

Z

Y

df

1

Sxyz =

1

df
0 0 0

0
1

df
0 0

0 0
1

df
0

0 0 0 1
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Step 2 (cont)Step 2 (cont)

• Where we are now:

Z

Y

1

-1

-1

-dn/df

A look down the X axis (same picture when looking down Y)
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Step 2 (cont)Step 2 (cont)

• Perspective transformation

– Stretching and flipping the truncated pyramid to the cuboid

• Change Z range: ([-dn/df,-1] -> [0,1])

• Stretch in XY plane: Non-uniform stretching based on z 

Z

Y

Z

Y

1

-1 1

-1

-dn/df
0

A look down the X axis
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Step 2 (cont)Step 2 (cont)

• Perspective transformation

– Applying D to homogeneous coordinates:

– Converting from homogeneous coordinates {x,y,z,w} to Cartesian 

coordinates (divide x,y,z by w)

D =

1 0 0 0

0 1 0 0

0 0
1

k−1

k

k−1

0 0 −1 0

, where k =
dn

df

D ⋅ 8x, y, z, 1< = :x, y,
k

−1 + k
+

z

−1 + k
, −z>

:−x

z
,

−y

z
,

k + z

z H1 − kL>
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:−x

z
,

−y

z
,

k + z

z H1 − kL>

Step 2 (cont)Step 2 (cont)

• Perspective transformation

Stretching in 

XY plane

Change Z 

range

Z

Y

Z

Y

1

-1 1

-1

0

A look down the X axis

-k
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Putting TogetherPutting Together

• Translation: 

• Rotation:

• Scaling: 

• Perspective transformation:

World-to-camera 
transformation

T

R

D

Sxy, Sxyz

X

Y

Z
2

2

1

(u)

(v)

(n)
(P)

T, R Sxy, Sxyz, D
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Putting TogetherPutting Together

q• Complete viewing transformation to bring a point      to the 

canonical volume:

q' = D Sxyz Sxy R T q

(u)

(v)

(n)
(P)

T, R

X

Y

Z
2

2

1

Sxy, Sxyz, D
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ClippingClipping

• After transformation into the canonical volume, each 

object will be clipped against 6 cuboid faces.

– Point clipping: checking coordinates range

– Edge clipping: computing line/plane intersections

• We will discuss a 2D version in next lecture. 

– Triangle clipping: can be done by line/plane intersections

−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, 0 ≤ z ≤ 1
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ProjectingProjecting

• Dropping z coordinate

– Resulting points have range:

−1 ≤ x ≤ 1, −1 ≤ y ≤ 1
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Viewport TransformViewport Transform

• Get viewport (pixel) coordinates

– Viewport coordinate {0,0} is at top-left corner

– If the viewport is a pixels wide and b pixels high, what is the pixel 

coordinates for a projected point {x,y}?

:Ha − 1L Hx + 1L
2

,
Hb − 1L H1 − yL

2
>

(0,0)

(0,b-1) (a-1,b-1)

(a-1,0)


