CSC 321 Computer Graphics

Projection

A painting based on a mythical tale as told by Pliny the Elder

Planar Geometric Projection

Classification of Projections

(a)

Perspective Projection

(b)

Parallel Projection

Parallel Projections

- Preserves object size
- Edges parallel to projection plane maintain their lengths after projection
- Preserves parallelism
- Lines that are parallel stay parallel after projection

Types of Parallel Projection

- Orthographic projection
- Projectors orthogonal to the view plane

- Oblique projection
- Projectors not orthogonal to the view plane

Types of Parallel Projection

Orthographic

Oblique

Multi-view Orthographic Projection

- Projection plane is one of coordinate planes

"3D Max" software interface

Axonometric Orthographic Projections

- Projection plane is not one of coordinate planes

Dimetric
Isometric

Oblique Projections

- Projectors not orthogonal to projection plane
- The projection plane is typically parallel to a face of the object
- Classified by the angle between projector and plane
- Pi/4: Cavalier type
- Preserves the lengths of edges orthogonal to projection plane
- ArcTan(2): Cabinet type
- Halves the lengths of edges orthogonal to projection plane

Cavalier: 45 degree

Cabinet: $\arctan (2)=63.4$ degree

Examples of Parallel Projections

cavalier

cabinet

Parallel Projection in Drawing

Earliest known technical drawing: Plan view (orthographic projection) from Mesopotamia, 2150 BC

Perspective Projections

- How our eyes see the world
- Objects further away look smaller (foreshortening)
- Parallel lines may not remain parallel

Vanishing Points

- Perspective projection of a group of parallel lines intersects at a single vanishing point
- Unless the group is parallel to the projection plane
- Why?

1. Find P on the viewing plane so that $P E$ is parallel to $A B$
2. $P, A^{\prime}, B^{\prime}$ lie on the same line, because of these facts:
3. A, B, P, E defines a plane.
4. $P, A^{\prime}, B^{\prime}$ all lie on the plane of ABPE
5. $P, A^{\prime}, B^{\prime}$ also lie on the viewing plane.
6. $P, A^{\prime}, B^{\prime}$ all lie on the intersecting line between viewing plane and the plane of ABPE.

Similarly, P,C', D' are co-linear for any CD parallel to $P E$.

Conclusion: P is the vanishing point (unless AB is parallel to the viewing plane, in which case P does not exist)

Types of Perspective Projections

- Based on number of vanishing points for lines parallel to the three coordinate axes
- Determined by \# of axes parallel to the viewing plane

One-point Perspective (view plane parallel to 2 axes)

Two-point Perspective (view plane parallel to 1 axis)

Three-point Perspective (view plane not parallel to any axis)

Giotto, Franciscan Rule Approved, 1295-1300

Leonardo da Vinci, The Last Supper, 1495-1498

Jan Vermeer, The Music Lesson, 1662

3D Reconstruction of The Music Lesson

Classification of Projections

Classification of Projections

CSC 321 Computer Graphics

Computer Projection 1

Review

- In the last lecture
- Definition: view point, view plane, projectors

- Types of projection
- Parallel (orthographic, oblique): parallel projectors (COP at infinity)
- Perspective: projectors as rays from COP

Review

- In the last lecture
- Geometric construction of Vanishing Points in perspective projection
- For parallel lines in the direction v
- Vanishing point after projection is the intersection of viewing plane with the ray from eye in the direction v

Preview

- In this lecture (and next)
- How to perform projection in the computer? Or, given a point in 3D, where do I draw it on the 2D computer screen?

World Coordinate: $\left\{\mathbf{x}_{\mathbf{w}}, \mathbf{y}_{\mathbf{w}}, \mathbf{z}_{\mathbf{w}}\right\}$

Screen Coordinate: $\left\{\mathbf{x}_{\mathbf{s}}, \mathbf{y s}_{\mathbf{s}}\right\}$

Virtual Camera

- Programmer's reference model
- General parameters
- Position of camera
- Orientation
- Field of view (wide angle, telephoto)
- Clipping plane (near distance, far distance)
- Perspective or parallel projection?
- Focal distance
- Tilt of view/film plane (for oblique views)

Position

- From where the camera is
- Like a photographer choosing the vantage point to shoot a photo
- Any 3D point $P=\left\{p_{x}, P_{y}, p_{z}\right\}$
- Use right-hand rule for coordinate axes
- Align right hand fingers with $+X$ axis
- Curl fingers towards +Y axis
- Your thumb points towards $+Z$ axis

P

Orientation - Look Vector

- Where the camera is looking
- Any 3D vector $L=\left\{I_{x}, I_{y}, I_{z}\right\}$
- Not necessarily a unit vector
- Look vector alone is not sufficient to describe orientation...

Orientation - Up Vector

- How the camera is rotated around the look vector
- If you are holding the camera horizontally or vertically, or in between.
- Any 3D vector $\mathrm{U}=\left\{\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right\}$
- Not necessarily orthogonal to look vector L
- Actual "Up-right" direction, U', is:

$$
U^{\prime}=U-\frac{U \cdot L}{L \cdot L} * L
$$

(projecting U onto the plane orthogonal to L)

Default Position, Orientation

- Camera at origin, looking down -Z axis, and in upright pose
- E.g., in OpenGL

$$
\begin{aligned}
& P=\{0,0,0\} \\
& L=\{0,0,-1\} \\
& U=\{0,1,0\}
\end{aligned}
$$

Viewing Angle

- Describes the field of view
- Like choosing a specific type of lens, e.g., a wide-angle lens or telephoto lens
- Width and height angles $\theta_{\mathrm{w}}, \theta_{\mathrm{h}}$
- Assuming the view region is a rectangle

Viewing Angle

- Determines amount of perspective distortion
- Small angles result in near-parallel projectors, hence little distortion
- Large angles result in widely varying projectors with large distortion

Viewing Angle

- When keeping the size of the main object in view, longer distances gives narrower view angle

Close-up (wide angle)

Far away (narrow angle)

Viewing Angle

Close-up (wide angle)

Far away (narrow angle)

Viewing Angle

Close-up (wide angle)
Far away (narrow angle)

Viewing Angle

- Fun example: dolly-zoom effect (or "Hitchcock zoom")
- Moves away the camera and shrinks the viewing angle at the same time, so that the main subjects stays the same size on screen
- The background gets "closer", and perspective distortion lessens

Viewing Angle

- Aspect Ratio $\boldsymbol{\alpha}$
- Ratio of width over height of the screen
- 1:1 (square)
- 4:3 (NTSC)
- 16:9 (HDTV)
- 2.35:1 (Widescreen Films)
- Width angle as aspect ratio and height angle
- Compute width angle:

$$
\theta_{\mathrm{w}}=2 \operatorname{ArcTan}\left[\operatorname{Tan}\left[\frac{\theta_{\mathrm{h}}}{2}\right] * \alpha\right]
$$

Clipping Planes

- Restricts visible volume between near and far clipping planes
- Objects closer than the near plane or further than the far plane are not drawn
- Objects intersecting the two planes are clipped
- Defined as distances d_{n}, d_{f} from camera along look vector

Clipping Planes

- Why do we need near plane
- Avoid drawing things too close to camera
- They will appear with large distortion, and may block view
- Avoid drawing things behind the camera
- They will appear upside-down and inside-out
- Why do we need far plane
- Avoid drawing things too far away
- They will complicate the scene
- They appear small on the screen anyway
- Saving rendering time

Perspective Camera Model

Perspective Camera Model

- View frustum: a truncated pyramid region that the camera can "see"

Orthographic Camera Model

- Width \mathbf{w} and height \mathbf{h} replace viewing angles
- Both width angle and height angle are effectively zero

Film Plane and Viewport

- Film Plane
- Any plane parallel to the near/far clipping planes.
- Viewport
- A rectangular region on the screen displaying what's projected on the film plane (may have different aspect ratio as the film plane)

Film Plane and Viewport

- No matter where the film plane is, the final image shown in the viewport is the same!

What next?

- Three steps
- Clipping: removes geometry outside the frustum
- Projecting: transforms 3D coords. to 2D coords. on the film plane
- Viewport transformation: gets pixel coordinate in the viewport

Other Camera Models

- Focal length
- Approximates behavior of real camera lens
- Objects at distance of focal length from camera are rendered in focus; other objects get blurred
- Focal length used in conjunction with clipping planes
- Only objects within view volume are rendered, whether blurred or not.

Other Camera Models

- Focal length

Rendering with focal blur

Other Camera Models

- Focal length

- Focal blur can serve as a cue for depth and (even) size

Held et al., "Making Big Things Look Small: Blur combined with other depth cues affects perceived size and distance", 2008

Other Camera Models

- Oblique projection
- Look vector not perpendicular to film plane

Oblique view volume:

Look vector is at an angle to the film plane

Nikon PC-E Nikkor 24mm Tilt/Shift lens

CSC 321 Computer Graphics

Computer Projection 2

Review

- In the last lecture
- We set up a Virtual Camera
- Position
- Orientation
- Clipping planes
- Viewing angles
- Orthographic/Perspective
are ready to project!
- Orthographic/Perspective

Preview

Preview

- The perspective view frustum (i.e., a truncated pyramid) is non-trivial to clip against
- We first transform the frustum to a canonical volume

Canonical View Volume

Canonical View Volume

- Canonical view volume makes things easy:
- Easy clipping: Clip against the coordinates range

$$
\begin{aligned}
& -1 \leq x \leq 1,-1 \leq y \leq 1 \\
& 0 \leq z \leq 1
\end{aligned}
$$

- Easy projecting: drop the Z coordinate! (because viewing plane is the XY plane, and projectors are parallel to Z axis)

$$
\begin{array}{cl}
\left\{\mathbf{x}_{\mathrm{c}}, \mathbf{y}_{\mathrm{c}}, \mathbf{z}_{\mathrm{c}}\right\} & \begin{array}{l}
\text { Coordinates in the } \\
\text { canonical volume }
\end{array} \\
\boldsymbol{\downarrow} & \\
\left\{\mathbf{x}_{\mathrm{c}}, \mathbf{y}_{\mathrm{c}}\right\} & \text { Projected 2D coordinates }
\end{array}
$$

Viewing Transformation

- The transformation that warps the perspective frustum to the canonical view volume
- Transforms world coordinates $\left\{\mathrm{x}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}, \mathrm{z}_{\mathrm{w}}\right\}$ into canonical coordinates $\left\{\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}\right.$ \}

Camera Coordinate System

- First, let's setup a coordinate system for the camera
- Origin at the camera
- Three axes: right (u), straight-up (v), negative look (n)
- Unit vectors forming an orthonormal, right-hand basis

Camera Coordinate System

- Computing n
- Opposite to look vector L, normalized

$$
\mathrm{n}=\frac{-\mathrm{L}}{|\mathrm{~L}|}
$$

Camera Coordinate System

- Computing v
- Projection of up vector U onto the camera plane, normalized

$$
\begin{aligned}
& v^{\prime}=U-(U \cdot n) * n \\
& v=\frac{v^{\prime}}{\left|v^{\prime}\right|}
\end{aligned}
$$

Camera Coordinate System

- Computing u
- Cross product of v and n

$$
\mathbf{u}=\mathrm{v} \times \mathrm{n}
$$

Camera Coordinate System

- Summary
- Three axes, computed from look vector L and up vector U :

$$
\begin{aligned}
& n=\frac{-L}{|L|} \\
& v=\frac{U-(U \cdot n) * n}{|U-(U \cdot n) * n|} \\
& u=v \times n
\end{aligned}
$$

- u,v,n form a right-hand coordinate basis
- "Camera coordinate system"

Computing Viewing Transformation

- Two steps
- Step 1: align camera coordinate system P, u, v, n with world coordinate system O,X,Y,Z
- Step 2: scale and stretch the frustum to the cuboid
- As a product of transformation matrices
- Using homogenous coordinates

Step 1

- First, translate the eye point P to the origin
- Let P have coordinates $\left(p_{x}, p_{y}, p_{z}\right)$

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & -p_{x} \\
0 & 1 & 0 & -p_{y} \\
0 & 0 & 1 & -p_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Step 1 (cont)

- Then, rotate the three axes u, v, n to X, Y, Z
- Let's set up the equation to solve for the rotation matrix (R) :
- Note the homogenous coordinates for a vector ends with $\mathbf{0}$!

$$
\begin{aligned}
& R \cdot u=\{1,0,0,0\} \\
& R \cdot v=\{0,1,0,0\} \\
& R \cdot n=\{0,0,1,0\} \\
& R \cdot\{0,0,0,1\}=\{0,0,0,1\}
\end{aligned}
$$

- In matrix form:

$$
R \cdot\left(\begin{array}{cccc}
u_{x} & v_{x} & n_{x} & 0 \\
u_{y} & v_{y} & n_{y} & 0 \\
u_{z} & v_{z} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Step 1 (cont)

- This is a matrix inversion problem:

$$
R=M^{-1} \quad \text { where } \quad M=\left(\begin{array}{cccc}
u_{x} & v_{x} & n_{x} & 0 \\
u_{y} & v_{y} & n_{y} & 0 \\
u_{z} & v_{z} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Since M is an orthonormal matrix:

$$
\mathbf{R}=\mathbf{M}^{T}
$$

Step 1 - Done

- Eye point at origin, looking down negative z axis

Step 2

- Some preparations
- First, make width/height angles to be $\pi / 2$
- Non-uniform scaling in X, Y coordinates

$$
S_{x y}=\left(\begin{array}{cccc}
\operatorname{Cot}\left[\frac{\theta_{\mathrm{w}}}{2}\right] & 0 & 0 & 0 \\
0 & \operatorname{Cot}\left[\frac{\theta_{\mathrm{h}}}{2}\right] & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

A look down the X axis

Step 2 (cont)

- Some preparations
- Next, push the far plane from $Z=-d_{f}$ to $Z=-1$
- Uniform scaling in all three coordinates

Step 2 (cont)

- Where we are now:

A look down the X axis (same picture when looking down Y)

Step 2 (cont)

- Perspective transformation
- Stretching and flipping the truncated pyramid to the cuboid
- Change Z range: $\left(\left[-\mathrm{d}_{\mathrm{n}} / \mathrm{d}_{\mathrm{f}},-1\right]->[0,1]\right)$
- Stretch in XY plane: Non-uniform stretching based on z

Step 2 (cont)

- Perspective transformation

$$
D=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{k-1} & \frac{k}{k-1} \\
0 & 0 & -1 & 0
\end{array}\right), \quad \text { where } k=\frac{d_{n}}{d_{f}}
$$

- Applying D to homogeneous coordinates:

$$
D \cdot\{x, y, z, 1\}=\left\{x, y, \frac{k}{-1+k}+\frac{z}{-1+k},-z\right\}
$$

- Converting from homogeneous coordinates $\{x, y, z, w\}$ to Cartesian coordinates (divide $\mathrm{x}, \mathrm{y}, \mathrm{z}$ by w)

$$
\left\{\frac{-x}{z}, \frac{-y}{z}, \frac{k+z}{z(1-k)}\right\}
$$

Step 2 (cont)

- Perspective transformation

A look down the X axis

Putting Together

- Translation: \mathbf{T}
- Rotation: R
- Scaling: $\mathbf{S}_{\mathrm{Xy}}, \mathbf{S}_{\mathrm{xyz}}$
- Perspective transformation: D

Putting Together

- Complete viewing transformation to bring a point q to the canonical volume:

$$
q^{\prime}=D S_{x y z} S_{x y} R T q
$$

Clipping

- After transformation into the canonical volume, each object will be clipped against 6 cuboid faces.
- Point clipping: checking coordinates range

$$
-1 \leq x \leq 1,-1 \leq y \leq 1, \quad 0 \leq z \leq 1
$$

- Edge clipping: computing line/plane intersections
- We will discuss a 2D version in next lecture.

- Triangle clipping: can be done by line/plane intersections

Projecting

- Dropping z coordinate
- Resulting points have range:
$-1 \leq x \leq 1,-1 \leq y \leq 1$

Viewport Transform

- Get viewport (pixel) coordinates
- Viewport coordinate $\{0,0\}$ is at top-left corner

- If the viewport is a pixels wide and \mathbf{b} pixels high, what is the pixel coordinates for a projected point $\{x, y\}$?

$$
\left\{\frac{(a-1)(x+1)}{2}, \frac{(b-1)(1-y)}{2}\right\}
$$

