\qquad
Name
This quiz is closed books and closed notes. No calculators or other devices allowed.

1. (4 pts.) Given the set is a basis for a subspace W, use the Gram-Schmidt process to produce an orthogonal basis of $\mathrm{W}:\{(3,-4,5),(-3,14,-7)\}$
This is problem 4 section 6.4
2. Set $\mathbf{v}_{1}=\mathbf{x}_{1}$ and compute that $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\mathbf{x}_{2}-(-2) \mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 6 \\ 3\end{array}\right]$. Thus an orthogonal basis for W is $\left\{\left[\begin{array}{r}3 \\ -4 \\ 5\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 3\end{array}\right]\right\}$.
3. (4 pts.) Let W be the subspace spanned by the \mathbf{u}^{\prime} s, and write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W .
$\mathbf{y}=(-1,4,3), \mathbf{u} \mathbf{1}=(1,1,1), \mathbf{u} 2=(-1,3,-2)$

This is problem 8, 6.3
8. Since $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=-1+3-2=0,\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal set. By the Orthogonal Decomposition Theorem,

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=2 \mathbf{u}_{1}+\frac{1}{2} \mathbf{u}_{2}=\left[\begin{array}{r}
3 / 2 \\
7 / 2 \\
1
\end{array}\right], \mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}=\left[\begin{array}{r}
-5 / 2 \\
1 / 2 \\
2
\end{array}\right]
$$

and $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.

