MAT 5-119 Calculus of a Single Variable I

Exam 2 November 9, 2015
name
Read the problems carefully - on most problems you must either justify your answers and/or show your work. Don't approximate your answers unless directed to do so. Graphing calculators are allowed. 75 points possible.

1. (8 pts.) Use the definition of derivative as limit of a difference quotient to find $\mathrm{f}^{\prime}(\mathrm{x})$ where $\mathrm{f}(\mathrm{x})=\frac{3}{x}$, for $\mathrm{x} \neq 0$.
2. (5 pts.) Let $\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{3}, \mathrm{~g}(\mathrm{x})=\frac{3}{\sqrt{x}}$, and $\mathrm{h}(\mathrm{x})=7 \pi$.
a. Find $f^{\prime}(x)$.
b. Find $g^{\prime}(x)$.
c. Find $h^{\prime}(x)$.
3. (5 pts.) Let $\mathrm{g}(\mathrm{x})=3 \sqrt{x}$. Find the equation of the tangent line to the graph of g at $\mathrm{x}=9$.
4. (6 pts.) Let f be the function whose second derivative $f^{\prime \prime}$ is given by the rule: $f^{\prime \prime}(x)=$ $(x+1)^{2}(x-2)$
a. Where, if anywhere is f concave up?
b. Does f have any inflection points? If so, where are they located?
5. (6 pts.) Give an antiderivative of the following functions:
a. $\mathrm{f}(\mathrm{x})=10 x^{4}+8 x^{3}+6 x^{2}+4 x+7$
b. $g(x)=\sqrt[3]{x}$
c. $h(x)=\frac{1}{x^{3}}$
6. (6 pts.) True or false? If true, explain why. If false, give a counterexample.
a. If the limit exists at point $x=a$, then a must be in the domain of the function.
b. If the limit of a function exists at point $x=a$, then the function is continuous at a.
c. The limit of a sum equals the sum of the limits.
7. (9 pts.) Let $f(t)=-8 t^{9}+9 t^{8}-7$. Use calculus techniques to answer questions about f; give exact values. Briefly justify ALL of your answers.
a. On which intervals, if any, is f increasing?
b. At which values of t, if any, does f have a stationary point?
c. At which values of t, if any, does f have a local maximum point?
8. (6 pts.) Made to order M-shaped function. Use calculus techniques to find a function rule for a function which has local maximums at $x=-1$ and $x=1$ and a local minimum at $x=0$. Show your work.
9. (6 pts.) Solve the initial value problem $y^{\prime}=4 x+3, y(0)=2$.
10. (8 pts.) An open box with capacity 36000 cubic inches is to be twice as long as it is wide. The material for the box costs $\$ 0.10$ per square foot. What are the dimensions of the least expensive box?
11. (10 pts.) Let f be the function given by the graph below; consider f only on the domain $[-3,3]$. Answer the following questions or find the following limits (or say they don't exist.)

a. $\lim _{x \rightarrow-1^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow-1} f(x)$
d. Where is f continuous? Briefly justify your answer.
e. Where is f differentiable? Briefly justify your answer.
