MAT4-120 Calculus of a Single Variable II

Team Quiz 3 December 3, 2015

Solution

name and team number

You must show your work for full credit on this quiz.

1. (4 pts.) Suppose a child who is 2 feet tall is running towards a street light (at night) that is 12 feet tall at a rate of 3 ft. per second. When the child is 12 feet from the light, how fast is the child's shadow shortening? Draw and label a picture as part of your solution.

$$\frac{s}{a} = \frac{x+s}{1a}$$

$$|\lambda s = 2x + 2s$$

$$10 = 2x$$

$$5s = x$$

$$5s = x$$

$$s' = \frac{3}{5}$$

2. (4 pts.) Given an initial guess of x0 = 1 compute one iterate using Newton's method to approximate the root of the function $f(x) = x^5 + 4x - 3$ on the interval [0,1]. Compare your answer to the solution given by your calculator.

$$x_1 = x_0 - \frac{f(x_0)}{f(x)}$$
 $f'(x) = 5x_1^4 + 4$

$$f(x)=5x+4$$

$$70611491577415 = .7$$

3. (4 pts.) Give the linear and quadratic Taylor polynomial approximations to the function $f(x) = \ln x$ at base point a = 1. Show all your work.

$$p_1(x) = 0 + [.(x-1)]^2$$

 $p_2(x) = (x-1) + -[(x-1)]^2$

$$f(x) = \ln x$$
 $f(1) = 0$
 $f(x) = \frac{1}{x}$
 $f(x) = -\frac{1}{x^2}$
 $f(x) = -\frac{1}{x^2}$