Notes CSC317 Computer Networks

Leon Tabak

13 October 2016

- distinction between forwarding and routing
 - forwarding: packet transfer (from input link to output link) in a single router
 - routing: packets movements through all routers in network
- topics
 - Internet Protocol (IP)
 - IPv4 datagram format
 - Network Address Translation (NAT)
 - datagram fragmentation
 - Internet Control Message Protocol (ICMP)
 - IPv6
- 2 principal classes of routing algorithms
 - link-state
 - distance-vector
- hierarchical routing algorithms
 - intra-autonomous: RIP, OSPF, IS-IS
 - inter-autonomous: BGP
- routers do not run application or transport layer protocols (except for control)
- routers run network (and link) layer protocols
- analogy to a trip by automobile (Pennsylvania to Florida)
 - forwarding: getting through a single intersection
 - routing: plan to get from home to vacation destination

- our authors use words forwarding and routing differently than other authors
- centralized and distributed routing algorithms
- interaction between forwarding and routing
 - routing protocol produces messages
 - messages used to configure forwarding tables
- packet switches—most general term
 - routers, switches, hubs
 - router—forward using addresses in network-layer datagram
 - link-layer switch—forward using addresses in link-layer frame
- organization/construction of a router
 - input ports
 - output ports
 - switching fabric
 - routing processor
- structure of IPv4 datagram
 - version (4 bits)
 - header length (4 bits) (most IP datagrams have no options)
 - type of service (8 bits)
 - datagram length (16 bits) (maximum is 65,535 but usually < 1500 bytes)
 - _ *
 - identifier (16 bits) (for fragmentation)
 - flags (3 bits) (for fragmentation)
 - fragmentation offset (13 bits) (for fragmentation)
 - *
 - time-to-live (8 bits) (prevent endless circulation, decremented each time datagram is processed by a router)
 - upper-layer protocol (8 bits) (e.g., 6 for TCP, 17 for UDP) (analogous to port number in transport protocol—binds lower level to higher level)
 - header checksum (16 bits)
 - _ >
 - source IP address (32 bits)

- _ *
- destination IP address (32 bits)
- why checksums in network and transport layers?
 - only IP header is checksummed at network layer
 - TCP/UDP checksum computed over the whole segment
 - IP can carry data not passed to TCP/UDP
 - TCP/UDP can run through ATM (non-IP) network
- TCP segment in IP datagram: 20 + 20 = 40 bytes of headers
- decisions in the design of routers
 - size of buffer
 - packet scheduling
- routing algorithms
 - classifications
 - * global vs. decentralized
 - * static vs. dynamic
 - * load-sensitive vs. load-insensitive
 - link-state
 - * inputs: network topology, all link costs
 - * each node broadcasts link-state packets to all other nodes
 - * e.g., Dijkstra's algorithm (similar to Prim's)
 - distance-vector
 - * iterative
 - * asynchronous
 - * distributed
 - * self-terminating
- intra-autonomous system routing and inter-autonomous systems routing
 - autonomous system
 - * routers owned/administered by same organization
 - * e.g., ISP or company network
 - intra-autonomous within a single autonomous system
 - inter-autonomous among several or many autonomous systems
- names of routing algorithms
 - RIP: Routing Information Protocol (intra-AS)
 - OSPF: Open Shortest Path First (intra-AS)
 - IS-IS: closely related to OSPF (not discussed further)
 - BGP: Border Gateway Protocol (inter-AS)