MAT2-121 Calculus of a Single Variable

Quiz 2 October 3, 2014

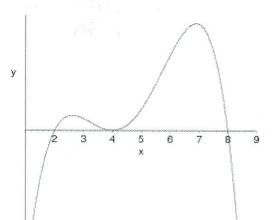
solutum

name

You must show your work/justify your answers for full credit on this quiz. 16 pts. possible

1. (6 pts.) Let f be the function whose derivative f' is given by the rule: f'(x) = (x+2)(x-3)

a. On which intervals, if any, is f increasing? $(-\infty, -2) \cup (3, \infty)$


b. At which values of x, if any, does f have a stationary point?

x=-2 x=3

c. At which values of x, if any, does f have a local minimum point?

X=3 1st der test - 0 +

2. (6 pts.) The graph of a second derivative of a function g whose domain in (0,9) is shown to the right. Use this graph to answer questions about g and g'.

a. Where does g have points of inflection?

2,8 q' chauges sign

b. On what interval(s) is g concave down?

(0,2) U(8)

c. On what interval(s) is g' increasing?

(218) 9">0

3. (4 pts.) Use the definition of a derivative as a limit of a difference quotient to find f'(4) where $f(x) = 3x^2$.

$$f(4) = \lim_{h \to 0} f(4+h) - f(4)$$

$$= \lim_{h \to 0} \frac{3(4+h)^{2} - 3 \cdot 4^{2}}{h}$$

$$= \lim_{h \to 0} \frac{48 + 24h + 3h^{2} - 48}{h}$$

$$= \lim_{h \to 0} \frac{24h + 3h^{2}}{h} = \lim_{h \to 0} \frac{3(4+3h)^{2}}{h}$$

$$= \lim_{h \to 0} \frac{24h + 3h^{2}}{h} = \lim_{h \to 0} \frac{3(4+3h)^{2}}{h}$$

$$= 24$$