
NoSQL

CSC230 Database Technologies for Analytics

15 November 2016

• relational databases

– many products available

– many people who know how to use relational databases

– long history, lots of experience from which to draw lessons

• need for an alternative to relational databases

– need to work with larger amounts of data (larger than older technol-
ogy can handle)

– need to work with multi-structured data

– need a means to develop software more quickly

– need for lower cost (open source)

• reasons to shift both operational and analytical applications away from
relational technologies

• developer’s perspectives (they influence choice of technology)

– data types now different than in the past

∗ structured

∗ semi-structured

∗ unstructured

∗ polymorphic (many structures in same data)

∗ cannot know data types in advance—types of data change over
time (rapidly)

– agile development model has replaced the waterfall model

∗ waterfall—12-18 months between each new release of a product

∗ agile—weeks (sometimes just days) between releases

∗ agile—small teams

– software-as-a-service (SAAS)

∗ always on

∗ clients around the world

1

http://www.forbes.com/sites/lisaarthur/2013/08/15/what-is-big-data/#7eec10463487
https://blogs.oracle.com/mdm/entry/operational_vs_analytical_master_data_management


∗ connect via a great variety of hardware/ coupled to a great va-
riety of software

– “scale-out architectures”

∗ open source software

∗ commodity servers (many cheap, off-the-shelf computers rather
a few, expensive, high performance machines)

∗ cloud computing (computers off-site, connections thru the Inter-
net)

• common characteristics of NoSQL systems

– flexible data model

– higher scalability

– superior performance

• trade-offs to achieve advantages

– give up expressive query language

– give up secondary indices

– give up consistency

• 5 dimensions for evaluating NoSQL/non-relational databases

– data model

∗ document model

· intuitive, natural, general-purpose

· documents—fields with types: string, binary, date, array,
etc.

· like JSON

· like objects used in high-level languages

· data not spread over multiple tables

· query based on any combination of fields

· (largely) eliminate joins

· schema are dynamic—each document can contain different
fields

∗ graph model

· nodes, edges, properties

· useful for modeling social networks, supply chains

· time required to learn this different model

∗ key-value/wide column model

· pairs of attribute names and attribute values

· no set schema: good for polymorphic and unstructured data

· attractive performance and scalability

2



· data retrieved by primary key

· value accessible only through key

· wide-columns: sparse, distributed, multi-dimensional, sorted
maps

· wide-columns: columns can be grouped

· narrow set of applications

∗ bottom line

· all of these data models provide schema flexibility

· document model has widest applicability

· document model easiest because of correspondence to objects

· wide column: more granular access than key-value, less flex-
ibility than document model

– query model

∗ more efficient queries that possible with relational model

∗ document stores allow richest query functions

∗ key-store/wide column stores allow fastest queries

· but limited query functions

· additional costs at application level

– consistency model

∗ relational model guaranteed consistency—people expect consis-
tency

∗ non-relational models: multiple copies of data (for availability,
scalability)

∗ non-relational models: consistent or eventually consistent

∗ different approaches to coding in each case

∗ MongoDB: tunable consistency, choice made at query level

∗ eventually consistent: sychronization of copies over time

∗ idempotent commands: same results every time (does not de-
pend upon history)

∗ eventually consistent: good for read-only systems, systems with
infrequent changes

∗ eventually consistent: advantage on inserts, additional costs and
complexity on updates, reads

– API model

∗ idiomatic drivers

· tailored to way of working in each high-level language

· easier to learn, use

· MongoDB provides drivers for 10 languages, community pro-
vides drivers for 30 more languages

∗ RESTful APIs

3



· simple, familiar

· latency inherent to HTTP

∗ SQL-like

· goal is to make learning curve shorter, less steep

· much less powerful, expressive than full SQL

· often support for queries but not inserts, updates

· performance suffers, maintenance harder if SQL-like language
fools programmers into assuming relational structure

– commercial support and community strength

∗ evaluate strength of company

∗ evaluate company’s commitment to technology, product

∗ how many companies? how many customers?

∗ how much competition? how many alternatives?

∗ how much software (for development, testing, documentation),
references and tutorials, case studies has community developed?

• MongoDB

– maintain foundation established by developers of relational systems

– expressive query language: access, manipulate, operational, analyti-
cal

– consistency

– integration, management: security, monitoring

– flexible data model

– scalability and performance

– always-on, global

∗ distribute databases over many nodes in many places

∗ use from anywhere

∗ use anytime

4


