
The Internet of Things

The Death of a Traditional Database?

CSC230 Database Technologies for Analytics

19 November 2016

Computer science

• definition of computer science in one question

– What can be automated?

• definition of computer science in four questions

– which questions can be answered by a computer program?

– how to write a program that answers a given question?

– how to select the best program that answers a given question?

– how to be sure that a program really solves exactly a given question,
every time, without error?

• algorithms + datastructures = programs

• what is artificial intelligence

– Artificial Intelligence Today and Tomorrow, Kris Hammond, Com-
puterWorld, 10 April 2015

– computer completes a task previously thought to require a human
being

– Turing Test

∗ put a computer in one room

∗ put a person in a second room

∗ put human interrogators in a third room

∗ interrogators send written questions to other two rooms, receive
written responses (unbiased by appearances, accents)

∗ if interrogators cannot determine from the responses which room
has a person and which room has a computer, then they must
conclude that the computer is “intelligent”

1

http://www.computerworld.com/article/2906336/emerging-technology/what-is-artificial-intelligence.html


– strong AI—machine produces same results as humans, in the same
way

– weak AI—machine produces same results as humans, not necessarily
in same way

– “in between” AI—use what is known about human beings reason
and how brain works to design computers and software, but without
a commitment to follow biological model faithfully

– narrow AI—single, specific task

– general AI—reason in many domains

– applications. . .

∗ robotics—machines that pick parts from a bin, assemble parts,
robots that walk

∗ autonomous vehicles—self-driving cars

∗ machine vision

∗ speech recognition, text-to-speech, and speech synthesis

∗ recommend books, movies

∗ pattern matching, classification, identification, diagnosis

∗ machine learning—from many examples

• any research at the cutting edge?

• machines that substitute for human beings or machines and human beings
working together?

• magnify human capacities?

• Google—artificial intelligence in an unexpected form?

• rate of progress in computer science

– fast!

∗ Moore’s Law: double # transistors on an integrated circuit (chip)
every 2 years

∗ similar rate of progress with mass storage (disks)

∗ double price/performance every 2 years

∗ 50 years since Moore’s prediction 7→ 25 doublings

∗ 225× ≈ 32 million×
∗ faster than in any other field

∗ faster in now than in any period in history

– slow!

∗ RISC chips

· invention in 1970s

2



· Reduced Instruction Set Computers (as opposed to CISC:
Complex Instruction Set Computers)

· smaller set of simpler instructions (rather than larger set of
more powerful instructions)

· smaller set of addressing modes (ways of specifying location
of operands)

· more uniform representation of instructions (less variety of
forms)

· faster execution (execute each instruction in a single cycle)

· load/store architecture

· arithmetic instructions read/write registers (rather than read/write
main memory)

· widespread adoption in 1990s

∗ object-oriented programming languages

· invention in 1970s

· class—a blueprint for the creation of objects

· object—a bundle of related data and methods for accessing,
updating, and combining that data

· make programs easier to read, easier to write

· avoid repeating code

· define one class in terms of another class

· inheritance—definition of subclass needs to include only fea-
tures that distinguish the subclass from parent class (shared
features come for free)

· overriding a method—method in subclass works diffently than
same method in parent class

· polymorphism—objects belonging to different classes carry
out same task in different ways

· polymorphism—squares compute their areas diffently than
do circles

· polymorphism—computer recognizes which version of a method
belongs to a given object, executes it automatically

· classes/objects are reusable components

· build programs with reusable components (instead of writing
everything from scratch)

· widespread adoption in 1990s

– world spoiled/deceived by rapid rate of progress in computing?

• how does software engineering differ from other kinds of engineering?

– less history/experience from which to learn

– harder to study and learn from successful design

3



– (compilation hides the details of a design)

– scale models are useless

– sudden rather than gradual failure

– no amount of testing can guarantee that all defects have been dis-
covered

– most complex products that human beings have ever designed

– software never wears out

– unconstrained by laws of physics (danger in having the freedom to
exercise too much imagination?)

• lessons that we have learned about how to create software

– write just a little at a time

– begin with a working example, modify just a little bit at a time

– test frequently!

– annotate code—explain to yourself and present and future teammates

– recognize the need for a second pair of eyes—work with partners

Outline of article

• predicting future of information and communication technology

• expert groups/projects

– GRIDs

– CLOUDs

– service-oriented architectures

– quantum computing

– bio-computing

– new materials

– human-computer interaction

– cognitive technology

• Internet of Things is a strong theme

• e-Infrastructure in Europe, Cyberinfrastructure in US

• database researchers not well represented

– surprising!

– future requires. . .

∗ interoperation with existing database technology (at least)

4



∗ evolutionary or revolutionary technology (more likely)

• database research

– semi-structured data—processing, managing of data streams

– schema matching, mapping for interoperation, domain ontologies

– Web-database interfaces

– modeling and systems development

– performance, query optimization with new algorithms

– optimized storage architecture—P2P (peer–to–peer)

• researchers challenged to match/contribute to advances in. . .

– social networking

– content creation and repurposing

– game

– sensor systems

– robotics, autonomous systems

– visualization

– user interaction

– systems and software development

– service-oriented architecture

• vision of Europe and the world 20 years from now. . .

– always-on, always with us devices for connecting to the Internet

– invisible infrastructure, optimizes performance, reliability, cost, se-
curity

– sense, detect, record, curate everything

– default universal sharing of data (with protection of ownership and
privacy)

– at home, in industry, in social services

– embedded subsystems

∗ agriculture

∗ transportation/vehicles

∗ medicine

∗ generation/distribution of power

• vision of Europe and the world 20 years from now: implications. . .

– need for smaller, faster, cheaper, more energy-efficient devices

∗ less heat

5



∗ biologically inspired

∗ quantum computing

– intelligent materials, Internet-ready

∗ agricultural products

∗ manufactured products

– open availability & physical access produce demands for. . .

∗ increased performance

∗ reduced latency

∗ greater scalability

∗ greater reliability

∗ more self-management

– middleware’s responsibility. . .

∗ self-* characteristics

· self-managing

· self-tuning

· self-repairing

∗ security/access/trust

· identification

· authorization

· trust

· security

· privacy

· access control

• infrastructure stack (bottom to top)

– e-infrastructure—communication

– i-infrastructure—processing

∗ collect

∗ structure

∗ manage

∗ describe

∗ manipulate

– k-infrastructure—knowledge

∗ semantics

∗ extract knowledge from information—deduction, induction

∗ codify, store knowledge

∗ API—interface to application layer

• SOKU: Service-Oriented Knowledge Utilities

6



– discoverable

– composable

– dynamically tunable

– metadata (to make discovery, composition, tuning possible)

– content

∗ massive, includes. . .

· structured, verified

· streams of data from detectors (sensors)

· personally authored

· education

· entertainment

• send software to data, rather than data to software (because of volume of
software)

• keys to development of SOKUs

– well-defined interface to e-infrastructure

– use of off-the-shelf, tested components

– rapid development

• markets/domains

– B2C—business to consumer

– B2B—business to business

– E2E—enterprise to enterprise (departments within an organization
serving one another?)

– R & D

• how decisions made by. . .

– deduction

– induction

– simulation

• non-functional characteristics of devices

– performance

– security

– use-conditions

• devices

– ’intelligent’

7



– ’learn’ (behavior changes/improves over time)

– end-user does not known (or want to know) location

– service level agreements negotiated by agents

• kinds of applications

– general (large, diverse audiences)—precomposed

– specialized (specific industries, markets, social groups)—dynamically
constructed

• seamless integration

– planning travels

– managing projects

∗ define tasks

∗ order tasks, specify dependencies/prerequisites

∗ establish benchmarks/milestones

∗ track/report progress

– collaborating with teammates

– scheduling meetings

• some (or all) of Information and Communication Services outsourced/placed
in cloud. . .

– “virtualization”

– IaaS: Infrastructure as a Service

– PaaS: Platform as a Service

– AaaS: Application as a Service

– EaaS: Enterprise as a Service

• what kind of R & D is required?

– metadata a part of all priorities

– formal syntax, declared semantics

– metadata to facilitate mobility of software services

∗ send software to node where it is needed

– metadata to describe sources of data

∗ structured, semi-structured, unstructured

∗ temporal properties

∗ degrees of certainty (propabilities)

– metadata to manage agents (?)

• replacement of established database technologies

8



– composition, orchestration of SOKUs

– intelligent dialogues between SOKU and (end-user) SOKU agents

• challenges in research

– distinguish between data and metadata

– categorize metadata

– measure, maintain state on millions of nodes

– describe data types, attributes

– describe precision and accuracy of data

– describe source, trustworthiness of data

– describe duration of relationships

– describe certainty of relationships

– trade performance for price

– declare, enforce, monitor policies for trust, security, and privacy

– cleanly separate services (processes), data (information and knowl-
edge), agents (roles, consumers)

• special challenge in detail: management of state

– conventional (relational) databases

∗ ACID: Atomic, Consistent, Isolated, Durable

∗ goal: maintain state in nearly real-time

∗ locking to prevent transactions from overlapping

∗ duration of locks depends upon. . .

· number of instructions executed in each update

· number of tables updated

∗ rollbacks reschedule locked-out transactions

∗ compensation restores state during rollbacks

– distributed databases

∗ geographically distributed data

∗ two-phase commit protocols

∗ compensation (restoration of state) as in non-distributed databases

∗ microseconds to minutes to execute protocols

∗ does not work with. . .

· millions of nodes

· frequent, automated updates from sensors (audio, video, etc.)

· frequent updates from numerous, geographically separated
human clients

∗ solutions?

9



· settle for maintenance of consistency of states in local neigh-
borhood

· use lazy methods (“eventual consistency?”)

· rethink meaning/importance of state, transactions

• special challenge in detail: representation of data

– multitude of types requires labeling, descriptions of data to make it
useable

– metadata

∗ describe attributes

∗ describe location

∗ describe ownership, permissions

– restriction to hierarchical organizations of data too restrictive

– real world does not map to hierarchies

– relationships change over time

– need for something like Apple’s Time Machine: view and review
relationships over time

• theoretical (mathematical) foundations

– relational calculus

– fuzzy logic (reasoning with probabilities/uncertainty)

– graph theory

• conclusions

– dataspaces (people + machines)—people solve problems with help of
machines

– relational database technology is 40 years old

– databases are an important component of Web applications

– computer scientists invented the Web over the last 20 years

– databases technologies neglected by researchers during that time

– people will invent ways of using new technologies to behave badly

References

[1] Keith G. Jeffery, The Internet of Things: The Death of a Traditional
Database?, IETE Technical Review, Volume 26, Issue 5, Sep–Oct 2009, pages
313–319

10


