Specification of Vectors and Matrices

CSC321 Computer Graphics

29 November 2016

1 Vector2D

1.1 Addition

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}\right) \\
\vec{v} & =\left(v_{x}, v_{y}\right) \\
\vec{u}+\vec{v} & =\left(u_{x}+v_{x}, u_{y}+v_{y}\right)
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(3,4) \\
\vec{v} & =(5,12) \\
\vec{u}+\vec{v} & =(3+5,4+12) \\
& =(8,16)
\end{aligned}
$$

1.2 Subtraction

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}\right) \\
\vec{v} & =\left(v_{x}, v_{y}\right) \\
\vec{u}+\vec{v} & =\left(u_{x}-v_{x}, u_{y}-v_{y}\right)
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(3,4) \\
\vec{v} & =(5,12) \\
\vec{v}-\vec{u} & =(5-3,12-4) \\
& =(2,8)
\end{aligned}
$$

1.3 Multiplication by a scalar

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}\right) \\
\text { scaleFactor } \times \vec{u} & =\left(\text { scaleFactor } \times u_{x}, \text { scaleFactor } \times u_{y}\right)
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(3,4) \\
2 \vec{u} & =(6,8)
\end{aligned}
$$

1.4 Dot product

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}\right) \\
\vec{v} & =\left(v_{x}, v_{y}\right) \\
\vec{u} \cdot \vec{v} & =u_{x} v_{x}+u_{y} v_{y}
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(3,4) \\
\vec{v} & =(5,12) \\
\vec{u} \cdot \vec{v} & =3 \cdot 5+4 \cdot 12 \\
& =15+48 \\
& =63
\end{aligned}
$$

$\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \psi \quad$ where ψ is the angle between the vectors

1.5 Magnitude

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}\right) \\
|\vec{u}| & =\sqrt{u_{x}^{2}+u_{y}^{2}} \\
& =\sqrt{\vec{u} \cdot \vec{u}}
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(3,4) \\
|\vec{u}| & =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{9+16} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

1.6 Normalize

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}\right) \\
\hat{u} & =\frac{1}{|\vec{u}|} \vec{u} \\
& =\left(\frac{u_{x}}{\sqrt{u_{x}^{2}+u_{y}^{2}}}, \frac{u_{y}}{\sqrt{u_{x}^{2}+u_{y}^{2}}}\right)
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(3,4) \\
|\vec{u}| & =5 \\
\hat{u} & =\frac{1}{|\vec{u}|} \vec{u} \\
& =\left(\frac{3}{5}, \frac{4}{5}\right)
\end{aligned}
$$

2 Vector3D

Here is the general rule:

2.1 Addition

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}, u_{z}\right) \\
\vec{v} & =\left(v_{x}, v_{y}, v_{z}\right) \\
\vec{u}+\vec{v} & =\left(u_{x}+v_{x}, u_{y}+v_{y}, u_{z}+v_{z}\right)
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(1,2,3) \\
\vec{v} & =(4,5,6) \\
\vec{u}+\vec{v} & =(1+4,2+5,3+6) \\
& =(5,7,9)
\end{aligned}
$$

2.2 Subtraction

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}, u_{z}\right) \\
\vec{v} & =\left(v_{x}, v_{y}, v_{z}\right) \\
\vec{u}+\vec{v} & =\left(u_{x}-v_{x}, u_{y}-v_{y}, u_{z}-v_{z}\right)
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(1,2,3) \\
\vec{v} & =(4,5,6) \\
\vec{v}-\vec{u} & =(4-1,5-2,6-3) \\
& =(3,3,3)
\end{aligned}
$$

2.3 Multiplication by a scalar

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}\right) \\
\text { scaleFactor } \times \vec{u} & =\left(\text { scaleFactor } \times u_{x}, \text { scaleFactor } \times u_{y}\right)
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(1,2,3) \\
2 \vec{u} & =(2,4,6)
\end{aligned}
$$

2.4 Dot product

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}, u_{z}\right) \\
\vec{v} & =\left(v_{x}, v_{y}, v_{z}\right) \\
\vec{u} \cdot \vec{v} & =u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(1,2,3) \\
\vec{v} & =(4,5,6) \\
\vec{u} \cdot \vec{v} & =1 \cdot 4+2 \cdot 5+3 \cdot 6 \\
& =4+10+18 \\
& =30
\end{aligned}
$$

$\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \psi \quad$ where ψ is the angle between the vectors

2.5 Magnitude

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}, u_{z}\right) \\
|\vec{u}| & =\sqrt{u_{x}^{2}+u_{y}^{2}+u_{z}^{2}} \\
& =\sqrt{\vec{u} \cdot \vec{u}}
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(1,2,2) \\
|\vec{u}| & =\sqrt{1^{2}+2^{2}+2^{2}} \\
& =\sqrt{1+4+4} \\
& =\sqrt{9} \\
& =3
\end{aligned}
$$

2.6 Normalize

Here is the general rule:

$$
\begin{aligned}
\vec{u} & =\left(u_{x}, u_{y}, u_{z}\right) \\
\hat{u} & =\frac{1}{|\vec{u}|} \vec{u} \\
& =\left(\frac{u_{x}}{\sqrt{u_{x}^{2}+u_{y}^{2}+u_{z}^{2}}}, \frac{u_{y}}{\sqrt{u_{x}^{2}+u_{y}^{2}+u_{z}^{2}}}\right)
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
\vec{u} & =(1,2,2) \\
|\vec{u}| & =3 \\
\hat{u} & =\frac{1}{|\vec{u}|} \vec{u} \\
& =\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

3 Matrix2x2

3.1 Special 2×2 matrices

3.1.1 Identity

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

3.1.2 Rotation

Here is the general rule:

$$
R(\psi)=\left[\begin{array}{rr}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]
$$

Here is a specific example:

$$
R(\pi / 2)=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

3.1.3 Scaling

$$
S\left(s_{x}, s_{y}\right)=\left[\begin{array}{rr}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

Here is a specific example:

$$
S(2,2)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

3.2 Multiplication: matrix \times matrix

Here is the general rule:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right] \\
B & =\left[\begin{array}{ll}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{array}\right] \\
A B & =\left[\begin{array}{ll}
\left(a_{00} b_{00}+a_{01} b_{10}\right) & \left(a_{00} b_{01}+a_{01} b_{11}\right) \\
\left(a_{10} b_{00}+a_{11} b_{10}\right) & \left(a_{10} b_{01}+a_{11} b_{11}\right)
\end{array}\right]
\end{aligned}
$$

Here is a specific example: A rotation by 30° ($\pi / 6$ radians) followed by a rotation by $60^{\circ}(\pi / 3$ radians) produces the same result as a single rotation by $90^{\circ}(\pi / 2$ radians $)$.

$$
\begin{aligned}
R\left(\frac{\pi}{6}\right) & =\left[\begin{array}{rr}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right] \\
R\left(\frac{\pi}{3}\right) & =\left[\begin{array}{rr}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] \\
R\left(\frac{\pi}{2}\right) & =\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \\
R\left(\frac{\pi}{6}\right) R\left(\frac{\pi}{3}\right) & =R\left(\frac{\pi}{2}\right)
\end{aligned}
$$

3.3 Multiplication: matrix \times vector

Here is the general rule:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right] \\
\vec{v} & =\left[\begin{array}{r}
v_{x} \\
v_{y}
\end{array}\right] \\
A \vec{v} & =\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right] \\
& =\left[\begin{array}{l}
a_{00} v_{x}+a_{01} v_{y} \\
a_{10} v_{x}+a_{11} v_{y}
\end{array}\right]
\end{aligned}
$$

Here is a specific example:

3.4 Determinant

Here is the general rule:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right] \\
|A| & =a_{00} a_{11}-a_{10} a_{01}
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
3 & 2 \\
6 & 8
\end{array}\right] \\
|A| & =3 \cdot 8-2 \cdot 6 \\
& =24-12 \\
& =12
\end{aligned}
$$

3.5 Inverse

Here is the general rule:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
A^{-1} & =\frac{1}{|A|}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \\
A A^{-1} & =I
\end{aligned}
$$

Here is a specific example:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
3 & 2 \\
6 & 8
\end{array}\right] \\
A^{-1} & =\frac{1}{|A|}\left[\begin{array}{rr}
8 & -2 \\
-6 & 3
\end{array}\right] \\
A^{-1} & =\frac{1}{12}\left[\begin{array}{rr}
8 & -2 \\
-6 & 3
\end{array}\right] \\
A^{-1} & =\left[\begin{array}{rr}
\frac{2}{3} & -\frac{1}{6} \\
-\frac{1}{2} & \frac{1}{4}
\end{array}\right] \\
{\left[\begin{array}{ll}
3 & 2 \\
6 & 8
\end{array}\right]\left[\begin{array}{rr}
\frac{2}{3} & -\frac{1}{6} \\
-\frac{1}{2} & \frac{1}{4}
\end{array}\right] } & =\left[\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

4 Matrix3x3

4.1 \quad Special 3×3 matrices

4.1.1 Identity

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

4.1.2 Rotation about the x -axis

$$
R_{x}(\psi)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & \cos \psi & -\sin \psi \\
0 & \sin \psi & \cos \psi
\end{array}\right]
$$

4.1.3 Rotation about the y-axis

$$
R_{y}(\psi)=\left[\begin{array}{rrr}
\cos \psi & 0 & \sin \psi \\
0 & 1 & 0 \\
-\sin \psi & 0 & \cos \psi
\end{array}\right]
$$

4.1.4 Rotation about the z-axis

$$
R_{z}(\psi)=\left[\begin{array}{rrr}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

4.1.5 Scaling

$$
S\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{rrr}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]
$$

4.2 Multiplication: matrix \times matrix

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right] \\
& B=\left[\begin{array}{lll}
b_{00} & b_{01} & b_{02} \\
b_{10} & b_{11} & b_{12} \\
b_{20} & b_{21} & b_{22}
\end{array}\right]
\end{aligned}
$$

$$
C=A B
$$

$$
=\left[\begin{array}{lll}
\left(a_{00} b_{00}+a_{01} b_{10}+a_{02} b_{20}\right) & \left(a_{00} b_{01}+a_{01} b_{11}+a_{02} b_{21}\right) & \left(a_{00} b_{02}+a_{01} b_{12}+a_{02} b_{22}\right) \\
\left(a_{10} b_{00}+a_{11} b_{10}+a_{12} b_{20}\right) & \left(a_{10} b_{01}+a_{11} b_{11}+a_{12} b_{21}\right) & \left(a_{10} b_{02}+a_{11} b_{12}+a_{12} b_{22}\right) \\
\left(a_{20} b_{00}+a_{21} b_{10}+a_{22} b_{20}\right) & \left(a_{20} b_{01}+a_{21} b_{11}+a_{22} b_{21}\right) & \left(a_{20} b_{02}+a_{21} b_{12}+a_{22} b_{22}\right)
\end{array}\right]
$$

Let $c_{i j}$ be the element in the $i^{t h}$ row and $j^{t h}$ column of the 3×3 matrix C. Similarly, let $a_{i j}$ and $b_{i j}$ be elements of the 3×3 matrices A and B whose product is C.

Then. . .

$$
\begin{aligned}
c_{i j} & =\sum_{k=0}^{2} a_{i k} b_{k j} \\
& =a_{i 0} b_{0 j}+a_{i 1} b_{1 j}+a_{i 2} b_{2 j}
\end{aligned}
$$

4.3 Multiplication: matrix \times vector

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right] \\
\vec{v} & =\left[\begin{array}{l}
v_{0} \\
v_{1} \\
v_{2}
\end{array}\right] \\
A \vec{v} & =\left[\begin{array}{lll}
a_{00} & v_{0}+a_{01} & v_{1}+a_{02} \\
a_{10} & v_{0}+a_{11} & v_{1}+a_{12} \\
v_{2} \\
a_{20} & v_{0}+a_{21} & v_{1}+a_{22}
\end{array} v_{2}\right.
\end{array}\right] .
$$

The element in the $i^{t h}$ row of $A \vec{v}$ is $\sum_{k=0}^{2} a_{i k} v_{k}$.

