Specification of Vectors and Matrices

CSC321 Computer Graphics

29 November 2016

1 Vector2D

1.1 Addition

Here is the general rule:

$$\vec{u} = (u_x, u_y)$$

$$\vec{v} = (v_x, v_y)$$

$$\vec{u} + \vec{v} = (u_x + v_x, u_y + v_y)$$

Here is a specific example:

$$\vec{u} = (3,4)$$

 $\vec{v} = (5,12)$
 $\vec{u} + \vec{v} = (3+5,4+12)$
 $= (8,16)$

1.2 Subtraction

Here is the general rule:

$$\vec{u} = (u_x, u_y)$$
 $\vec{v} = (v_x, v_y)$
 $\vec{u} + \vec{v} = (u_x - v_x, u_y - v_y)$

Here is a specific example:

$$\vec{u} = (3,4)$$

 $\vec{v} = (5,12)$
 $\vec{v} - \vec{u} = (5-3,12-4)$
 $= (2,8)$

1.3 Multiplication by a scalar

Here is the general rule:

$$\vec{u} = (u_x, u_y)$$

$$scaleFactor \times \vec{u} = (scaleFactor \times u_x, scaleFactor \times u_y)$$

Here is a specific example:

$$\vec{u} = (3,4)$$

 $2\vec{u} = (6,8)$

1.4 Dot product

Here is the general rule:

$$\vec{u} = (u_x, u_y)$$
$$\vec{v} = (v_x, v_y)$$
$$\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y$$

Here is a specific example:

$$\vec{u} = (3, 4)$$

 $\vec{v} = (5, 12)$
 $\vec{u} \cdot \vec{v} = 3 \cdot 5 + 4 \cdot 12$
 $= 15 + 48$
 $= 63$

 $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \psi$ where ψ is the angle between the vectors

1.5 Magnitude

Here is the general rule:

$$\vec{u} = (u_x, u_y)$$
$$|\vec{u}| = \sqrt{u_x^2 + u_y^2}$$
$$= \sqrt{\vec{u} \cdot \vec{u}}$$

Here is a specific example:

$$\vec{u} = (3,4)$$
$$|\vec{u}| = \sqrt{3^2 + 4^2}$$
$$= \sqrt{9 + 16}$$
$$= \sqrt{25}$$
$$= 5$$

1.6 Normalize

Here is the general rule:

$$\vec{u} = (u_x, u_y)$$

$$\hat{u} = \frac{1}{|\vec{u}|} \vec{u}$$

$$= (\frac{u_x}{\sqrt{u_x^2 + u_y^2}}, \frac{u_y}{\sqrt{u_x^2 + u_y^2}})$$

Here is a specific example:

$$\vec{u} = (3,4)$$
 $|\vec{u}| = 5$
 $\hat{u} = \frac{1}{|\vec{u}|} \vec{u}$
 $= (\frac{3}{5}, \frac{4}{5})$

2 Vector3D

Here is the general rule:

2.1 Addition

$$\vec{u} = (u_x, u_y, u_z)$$

 $\vec{v} = (v_x, v_y, v_z)$
 $\vec{u} + \vec{v} = (u_x + v_x, u_y + v_y, u_z + v_z)$

Here is a specific example:

$$\vec{u} = (1, 2, 3)$$

$$\vec{v} = (4, 5, 6)$$

$$\vec{u} + \vec{v} = (1 + 4, 2 + 5, 3 + 6)$$

$$= (5, 7, 9)$$

2.2 Subtraction

Here is the general rule:

$$\vec{u} = (u_x, u_y, u_z)$$

$$\vec{v} = (v_x, v_y, v_z)$$

$$\vec{u} + \vec{v} = (u_x - v_x, u_y - v_y, u_z - v_z)$$

Here is a specific example:

$$\vec{u} = (1, 2, 3)$$

 $\vec{v} = (4, 5, 6)$
 $\vec{v} - \vec{u} = (4 - 1, 5 - 2, 6 - 3)$
 $= (3, 3, 3)$

2.3 Multiplication by a scalar

Here is the general rule:

$$\vec{u} = (u_x, u_y)$$

 $scaleFactor \times \vec{u} = (scaleFactor \times u_x, scaleFactor \times u_y)$

Here is a specific example:

$$\vec{u} = (1, 2, 3)$$

 $2\vec{u} = (2, 4, 6)$

2.4 Dot product

Here is the general rule:

$$\vec{u} = (u_x, u_y, u_z)$$

$$\vec{v} = (v_x, v_y, v_z)$$

$$\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z$$

Here is a specific example:

$$\vec{u} = (1, 2, 3)$$

 $\vec{v} = (4, 5, 6)$
 $\vec{u} \cdot \vec{v} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6$
 $= 4 + 10 + 18$
 $= 30$

 $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \psi$ where ψ is the angle between the vectors

2.5 Magnitude

Here is the general rule:

$$\vec{u} = (u_x, u_y, u_z)$$
$$|\vec{u}| = \sqrt{u_x^2 + u_y^2 + u_z^2}$$
$$= \sqrt{\vec{u} \cdot \vec{u}}$$

Here is a specific example:

$$\vec{u} = (1, 2, 2)$$
$$|\vec{u}| = \sqrt{1^2 + 2^2 + 2^2}$$
$$= \sqrt{1 + 4 + 4}$$
$$= \sqrt{9}$$
$$= 3$$

2.6 Normalize

Here is the general rule:

$$\vec{u} = (u_x, u_y, u_z)$$

$$\hat{u} = \frac{1}{|\vec{u}|} \vec{u}$$

$$= (\frac{u_x}{\sqrt{u_x^2 + u_y^2 + u_z^2}}, \frac{u_y}{\sqrt{u_x^2 + u_y^2 + u_z^2}})$$

Here is a specific example:

$$\begin{split} \vec{u} &= (1,2,2) \\ |\vec{u}| &= 3 \\ \hat{u} &= \frac{1}{|\vec{u}|} \vec{u} \\ &= (\frac{1}{3}, \frac{2}{3}, \frac{2}{3}) \end{split}$$

3 Matrix2x2

3.1 Special 2×2 matrices

3.1.1 Identity

$$I = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

3.1.2 Rotation

Here is the general rule:

$$R(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix}$$

Here is a specific example:

$$R(\pi/2) = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

3.1.3 Scaling

$$S(s_x, s_y) = \left[\begin{array}{cc} s_x & 0 \\ 0 & s_y \end{array} \right]$$

Here is a specific example:

$$S(2,2) = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right]$$

3.2 Multiplication: $matrix \times matrix$

Here is the general rule:

$$A = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{bmatrix}$$

$$AB = \begin{bmatrix} (a_{00}b_{00} + a_{01}b_{10}) & (a_{00}b_{01} + a_{01}b_{11}) \\ (a_{10}b_{00} + a_{11}b_{10}) & (a_{10}b_{01} + a_{11}b_{11}) \end{bmatrix}$$

Here is a specific example: A rotation by 30° ($\pi/6$ radians) followed by a rotation by 60° ($\pi/3$ radians) produces the same result as a single rotation by 90° ($\pi/2$ radians).

$$R(\frac{\pi}{6}) = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$R(\frac{\pi}{3}) = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

$$R(\frac{\pi}{2}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$R(\frac{\pi}{6}) R(\frac{\pi}{3}) = R(\frac{\pi}{2})$$

3.3 Multiplication: matrix \times vector

Here is the general rule:

$$A = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix}$$

$$\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

$$A\vec{v} = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

$$= \begin{bmatrix} a_{00}v_x + a_{01}v_y \\ a_{10}v_x + a_{11}v_y \end{bmatrix}$$

Here is a specific example:

3.4 Determinant

Here is the general rule:

$$A = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix}$$
$$|A| = a_{00}a_{11} - a_{10}a_{01}$$

Here is a specific example:

$$A = \begin{bmatrix} 3 & 2 \\ 6 & 8 \end{bmatrix}$$
$$|A| = 3 \cdot 8 - 2 \cdot 6$$
$$= 24 - 12$$
$$= 12$$

3.5 Inverse

Here is the general rule:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$AA^{-1} = I$$

Here is a specific example:

$$A = \begin{bmatrix} 3 & 2 \\ 6 & 8 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} 8 & -2 \\ -6 & 3 \end{bmatrix}$$

$$A^{-1} = \frac{1}{12} \begin{bmatrix} 8 & -2 \\ -6 & 3 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{2} & \frac{1}{4} \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 \\ 6 & 8 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{2} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

4 Matrix3x3

4.1 Special 3×3 matrices

4.1.1 Identity

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

4.1.2 Rotation about the x-axis

$$R_x(\psi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi \end{bmatrix}$$

4.1.3 Rotation about the y-axis

$$R_y(\psi) = \begin{bmatrix} \cos \psi & 0 & \sin \psi \\ 0 & 1 & 0 \\ -\sin \psi & 0 & \cos \psi \end{bmatrix}$$

4.1.4 Rotation about the z-axis

$$R_z(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

4.1.5 Scaling

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix}$$

4.2 Multiplication: $matrix \times matrix$

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix}$$

$$C = AB$$

$$= \begin{bmatrix} (a_{00}b_{00} + a_{01}b_{10} + a_{02}b_{20}) & (a_{00}b_{01} + a_{01}b_{11} + a_{02}b_{21}) & (a_{00}b_{02} + a_{01}b_{12} + a_{02}b_{22}) \\ (a_{10}b_{00} + a_{11}b_{10} + a_{12}b_{20}) & (a_{10}b_{01} + a_{11}b_{11} + a_{12}b_{21}) & (a_{10}b_{02} + a_{11}b_{12} + a_{12}b_{22}) \\ (a_{20}b_{00} + a_{21}b_{10} + a_{22}b_{20}) & (a_{20}b_{01} + a_{21}b_{11} + a_{22}b_{21}) & (a_{20}b_{02} + a_{21}b_{12} + a_{22}b_{22}) \end{bmatrix}$$

Let c_{ij} be the element in the i^{th} row and j^{th} column of the 3×3 matrix C. Similarly, let a_{ij} and b_{ij} be elements of the 3×3 matrices A and B whose product is C.

Then...

$$c_{ij} = \sum_{k=0}^{2} a_{ik} b_{kj}$$
$$= a_{i0} b_{0j} + a_{i1} b_{1j} + a_{i2} b_{2j}$$

4.3 Multiplication: matrix \times vector

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$

$$\vec{v} = \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix}$$

$$A\vec{v} = \begin{bmatrix} a_{00} v_0 + a_{01} v_1 + a_{02} v_2 \\ a_{10} v_0 + a_{11} v_1 + a_{12} v_2 \\ a_{20} v_0 + a_{21} v_1 + a_{22} v_2 \end{bmatrix}$$

The element in the i^{th} row of $A\vec{v}$ is $\sum_{k=0}^{2} a_{ik} v_k$.