Notes

CSC321 Computer Graphics

12 December 2016

Review before beginning the lesson.

In this lesson, we will multiply matrices and vectors.
Recall that...

$$
\left[\begin{array}{ll}
m_{00} & m_{01} \\
m_{10} & m_{11}
\end{array}\right]\left[\begin{array}{l}
v_{0} \\
v_{1}
\end{array}\right]=\left[\begin{array}{lll}
m_{00} & v_{0}+m_{01} & v_{1} \\
m_{10} & v_{0}+m_{11} & v_{1}
\end{array}\right]
$$

For example...

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right] } & =\left[\begin{array}{l}
1 \cdot 5+2 \cdot 6 \\
3 \cdot 5+4 \cdot 6
\end{array}\right] \\
& =\left[\begin{array}{l}
17 \\
39
\end{array}\right]
\end{aligned}
$$

Also recall that...

$$
\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right]\left[\begin{array}{ll}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{array}\right]=\left[\begin{array}{lll}
\left(a_{00} b_{00}+a_{01} b_{10}\right) & \left(a_{00} b_{01}+a_{01} b_{11}\right) \\
\left(a_{10} b_{00}+a_{11} b_{10}\right) & \left(a_{10} b_{01}+a_{11} b_{11}\right)
\end{array}\right]
$$

Here is a numerical example...

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 8
\end{array}\right]\left[\begin{array}{rr}
2 & -\frac{3}{4} \\
-1 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Show that for some matrices A and B it is true that $A B=B A$.
- Show that for some matrices A and B it is not true that $A B=B A$.

Different ways of describing a line in the plane.

Explicit equation.

This explicit equation defines the line in the plane whose slope is m and whose y intercept is b. We can use this form to describe any line except those that are parallel to the y axis.

$$
y=m x+b
$$

- What is the value of m for a horizontal line?

Parametric equations.

This is the parametric formulation of the line that passes through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$. We can use this form to describe any line (including lines that are parallel to the y axis).

$$
\begin{aligned}
& x(t)=(1-t) x_{0}+t x_{1} \\
& y(t)=(1-t) y_{0}+t y_{1}
\end{aligned}
$$

When $0 \leq t \leq 1,(x(t), y(t))$ is a point on the line segment whose endpoints are $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

When $t<0$ or $t>1$, the point $(x(t), y(t))$ lies on the line that passes through $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ but it is outside the segment bounded by the two endpoints.

- Describe a line parametrically with a single vector equation.

Implicit equation.

We can also describe any line with an implicit equation.

$$
a x+b y+c=0
$$

Of course, the equality holds when we multiply both sides by the same value and when we subtract the same value from both sides.

$$
\begin{aligned}
a x+b y+c & =0 \\
a x+b y & =-c \\
\frac{-1}{c}(a x+b y) & =-c \\
\frac{-a}{c} x+\frac{-b}{c} y & =1
\end{aligned}
$$

By replacing the values of a, b, and c we can describe any line with an equation that looks like this:

$$
a x+b y=1
$$

The equation holds for all points (x, y) on the line.

- Let $f(x, y)=a x+b y+c$ and let $f(x, y)=0$ be the implicit equation of a line.
Find the elements of a vector that points along the direction of the line by computing the gradient of $f(x, y)$:
Do this by first differentiating $f(x, y)$ with respect to x, treating y as a constant. Then differentiate $f(x, y)$ with respect to y, treating x as a constant.

$$
\nabla f(x, y)=\left(\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right)
$$

Finding the implicit equation of a line.

Given two distinct points on the line, we can find the values of a and b by solving a system of linear equations.

$$
\begin{aligned}
& a x_{0}+b y_{0}=1 \\
& a x_{1}+b y_{1}=1
\end{aligned}
$$

We can describe this relationship with a matrix of coefficients, a vector of the unknowns, and a vector of constants on the right-hand side.

$$
\left[\begin{array}{ll}
x_{0} & y_{0} \\
x_{1} & y_{1}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

This is a system of two equations with two unknowns.
We can solve the system by multiplying both sides by the inverse of the matrix of coefficients.

If A is a 2×2 matrix, then its determinant $|A|$ and inverse A^{-1} are given as follows:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right] \\
|A| & =a_{00} a_{11}-a_{01} a_{10} \\
A^{-1} & =\frac{1}{|A|}\left[\begin{array}{rr}
a_{11} & -a_{01} \\
-a_{10} & a_{00}
\end{array}\right]
\end{aligned}
$$

We can confirm that A^{-1} is the inverse of A by multiplying the two matrices:

$$
\begin{aligned}
A^{-1} A & =I \\
\frac{1}{a_{00} a_{11}-a_{01} a_{10}}\left[\begin{array}{rr}
a_{11} & -a_{01} \\
-a_{10} & a_{00}
\end{array}\right]\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right] & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Now, let's use our knowledge of inverses to find the implicit equation of a line that passes through $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

$$
\begin{aligned}
{\left[\begin{array}{ll}
x_{0} & y_{0} \\
x_{1} & y_{1}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] } & =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\frac{1}{x_{0} y_{1}-y_{0} x_{1}}\left[\begin{array}{rr}
y_{1} & -y_{0} \\
-x_{1} & x_{0}
\end{array}\right]\left[\begin{array}{ll}
x_{0} & y_{0} \\
x_{1} & y_{1}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] & =\frac{1}{x_{0} y_{1}-y_{0} x_{1}}\left[\begin{array}{rr}
y_{1} & -y_{0} \\
-x_{1} & x_{0}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] } & =\frac{1}{x_{0} y_{1}-y_{0} x_{1}}\left[\begin{array}{rr}
y_{1} & -y_{0} \\
-x_{1} & x_{0}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
a \\
b
\end{array}\right] } & =\frac{1}{x_{0} y_{1}-y_{0} x_{1}}\left[\begin{array}{c}
\left(y_{1}-y_{0}\right) \\
\left(x_{0}-x_{1}\right)
\end{array}\right]
\end{aligned}
$$

- When is it not possible to solve a system of two linear equations with two unknowns?

The implicit equation of the line that passes through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ is:

$$
\begin{aligned}
\frac{y_{1}-y_{0}}{x_{0} y_{1}-y_{0} x_{1}} x+\frac{x_{0}-x_{1}}{x_{0} y_{1}-y_{0} x_{1}} y & =1 \\
\left(y_{1}-y_{0}\right) x+\left(x_{0}-x_{1}\right) y & =\left(x_{0} y_{1}-y_{0} x_{1}\right) \\
\left(y_{1}-y_{0}\right) x+\left(x_{0}-x_{1}\right) y+\left(y_{0} x_{1}-x_{0} y_{1}\right) & =0
\end{aligned}
$$

This equation holds for x and y when the point (x, y) lies on the line that passes through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

- Confirm that the equality holds for $x=x_{0}$ and $y=y_{0}$.
- Confirm that the equality holds for $x=x_{1}$ and $y=y_{1}$.

For points not on the line, evaluation of the left-hand side of this equation yields a value other than 0 . That non-zero value represents a "signed distance." A
point whose distance from the line is negative is on one side of the line. A point whose distance is positive is on the other side of the line.

This formula gives us a mean to distinguish between points that lie on different sides of a line.

The distance is also a scaled distance. We get to choose the scale. The choice of a particular scale will give us another way of specifying the coordinates of a point and a means to determine whether a point is inside or outside of a triangle.

Barycentric coordinates.

Any line in the plane can be described with an implicit equation:

$$
a x+b y+c=0
$$

We have shown how to find values for a, b, and c to describe the line that passes through two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

$$
\begin{aligned}
& a=\left(y_{1}-y_{0}\right) \\
& b=\left(x_{0}-x_{1}\right) \\
& c=\left(y_{0} x_{1}-x_{0} y_{1}\right) \\
&\left(y_{1}-y_{0}\right) x+\left(x_{0}-x_{1}\right) y+\left(y_{0} x_{1}-x_{0} y_{1}\right)=0
\end{aligned}
$$

Of course, if the equation $a x+b y+c=0$ holds, so do all of these equations. . .

$$
\begin{aligned}
& 2 a x+2 b y+2 c=0 \\
& 3 a x+3 b y+3 c=0 \\
& s a x+s b y+s c=0 \text { for all } s
\end{aligned}
$$

Let us scale our implicit equation for the line that passes through $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ so that the distance to a third point $\left(x_{2}, y_{2}\right)$ is 1.0.

$$
\frac{\left(y_{1}-y_{0}\right) x+\left(x_{0}-x_{1}\right) y+\left(y_{0} x_{1}-x_{0} y_{1}\right)}{\left(y_{1}-y_{0}\right) x_{2}+\left(x_{0}-x_{1}\right) y_{2}+\left(y_{0} x_{1}-x_{0} y_{1}\right)}=0
$$

- Confirm that the value of the left-side of this equation is 1.0 when $x=x_{2}$ and $y=y_{2}$.
- Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$ be the three vertices of a triangle. What are the upper and lower bounds of the signed, scaled distances of points (x, y) in the triangle from the edge defined by $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right) ?$

Distances of a point from the 3 edges of a triangle.

Let (x, y) be a point in the plane.
Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$ be the three vertices of a triangle in the plane.
Then the distances of (x, y) from the lines that contain the triangle's edges are given as follows:

$$
\begin{aligned}
\alpha & =\frac{\left(y_{1}-y_{0}\right) x+\left(x_{0}-x_{1}\right) y+\left(y_{0} x_{1}-x_{0} y_{1}\right)}{\left(y_{1}-y_{0}\right) x_{2}+\left(x_{0}-x_{1}\right) y_{2}+\left(y_{0} x_{1}-x_{0} y_{1}\right)} \\
\beta & =\frac{\left(y_{2}-y_{1}\right) x+\left(x_{1}-x_{2}\right) y+\left(y_{1} x_{2}-x_{1} y_{2}\right)}{\left(y_{2}-y_{1}\right) x_{0}+\left(x_{1}-x_{2}\right) y_{0}+\left(y_{1} x_{2}-x_{1} y_{2}\right)} \\
\gamma & =\frac{\left(y_{0}-y_{2}\right) x+\left(x_{2}-x_{0}\right) y+\left(y_{2} x_{0}-x_{2} y_{0}\right)}{\left(y_{0}-y_{2}\right) x_{1}+\left(x_{2}-x_{0}\right) y_{1}+\left(y_{2} x_{0}-x_{2} y_{0}\right)} \\
& =1-\alpha-\beta
\end{aligned}
$$

A point is in the triangle if and only if. . .

$$
\begin{aligned}
& 0 \leq \alpha \leq 1 \\
& 0 \leq \beta \leq 1 \\
& 0 \leq \gamma \leq 1
\end{aligned}
$$

- Write a JavaScript function that returns true if a point is inside a given triangle and false otherwise. Define the function with arguments that specify the triangle and point.

