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C6B.2  Jupiter's radius is » = 71,500 km and its rate of rotation is | @| = 1 revolution (2 rad) per 9.92 h. According
to equation C6.6, the speed of a point on the Jupiter’s equator is
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C6B.4  Ifthe Lazy Susan rotates once every 4 seconds, then its angular velocity is | @| = 27 rad/(4 s) = 1.57 rad/s.
Its angular momentum is L = Il@|, where I = aMR* is the disk’s moment of inertia, M = 5.0 kg is its mass, R =10.5
m is its radius, and (according to figure C6.7) a = Elfora solid disk. Therefore, the disk’s angular momentum has a
magnitude of
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The common direction of @and L = I is (according to the right hand rule shown in figure C6.3) vertically down-
ward if the disk rotates clockwise when viewed from above.
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C6B.6  The ball’s angular momentum is L=1l@|, where I = aMR® is the ball’s moment of inertia, M = 0.60 kg
is its mass, R = 0.755 m/2x is its radius, and (according to figure C6.7) e = 2/3 for a hollow ball like a basketball.
Therefore, the ball's initial angular momentum (when its angular speed is || = 4(27 rad) /s =25.1rad /s) has a
magnitude of

Tt amr2l = 2 0.755 m V(1= 1 1ad | _ o 145 k8™’
|L,|=1l@&|=aMR @ | 3[{].6{]kg]( S )(25.1 ! ) 0.145 (1)

5

The torque is the rate at which an interaction contributes twirl to an object. If we assume that frictional torque is the
only torque acting on the ball and that the torque is constant over the time T = 5 s that it takes the ball to rotate at

half its original rate, then that torque is

df _L-Ly 3L, . |L,] 0145kgm?/s kg-m?
IR S 2(.0s) OS5 @)

T=

{The torque’s direction is opposite to the ball’s angular momentum direction.)
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C6B.9  We can calculate the object’s moment of inertia by summing the moments of inertia of its parts. Here is a
cross-sectional view of the object and the rotation axis:

1

Raotation
axis

Ball,
Mass m

If we treat each of the balls as point particles, then the two balls that lie on the rotation axis have zero distance from
that axis and thus contribute nothing to the object’s moment of inertia. (Even if each such ball’s radius is a finite
value r << L, then its contribution Eha“ m;r+ << mL* and so will be much smaller than what the other two balls
contribute.) Therefore, this object’s moment of inertia is approximately

I=m(yt LY + m(y/L LY +negligible = T mL*+ L mL* = mL* (1)
In terms of the object’s total mass M = 4m and maximum radius R = ,,"%L , we have
I=ml='4m2(/TLY =IMR* = a=1! 2)

Therefore « for this object is less than 1, as it must be.
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C6M.2  According to figure C6.7, a solid sphere of mass M and radius R has a moment of inertia I given by
I=2MR?. Such a sphere’s angular momentum is L = I@, and (according to equation C6.6) the speed of a point on
the sphere’s equator is |i=' | = R| @ | Therefore, if the magnitude of the electron’s spin angular momentum must be

\L| = Wan, then
51=Rl@|=rILI_g®/4m) __5n__  5663x107}s) fllkg'mzfsz)
1 ZMR>  8ZMR  87(9.11x 10 M kg)(10 *m)\ 1%
—145x 10" ST _ 1 455104 M )

m-s 5

Since the speed of light is about 3.0 x 10® m/s, this is almost 500,000 times the speed of light. As nothing can travel
faster than light, this model can’t be right.
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C6M.3  Initial and final diagrams for this problem look like this:
Initial: & Final: | @& Known:
' ' R, = 700,000 km
R;= 12 km
= Initial rotation period T, = 2.4 Ms
-

Unknown:
R; @;|=? |@=? M=?
Final rotation period T, =7
Core

of star,
mass M

The system here is the star’s core, which is isolated because it floats in space. The core’s rotation rate must change
because its angular momentum must be conserved:

L‘ﬂ}]':fjra}f (”

where I, =, MR? and | f=a fhinf are the star’s initial and final moments of inertia respectively. The values of a;
and a;in depend on the distribution of mass within the core (that is, the core’s density profile). For example, if the
density of the core were constant, then a = 2/5. However, the core is more likely to be more dense in the center and
less dense at its surface, yielding an & an unknown amount smaller than 2/5. The only way forward with this problem
is to assume that the density profile remains the same as the core collapses: &; = &, . It siill seems like we have o
many unknowns and not enough eguations, but perhaps some things will cancel out. If we take the magnitude of
both sides of equation 1, divide both sides by I, and substitute in the expressions for the moments of inertia, we get:

|a3f| _ IJ’ _ hiMR?- _( RJ’ )2
— - - 2 -

|mi| IJF &\‘{MRI \ R;
Note that the core mass M and the value of « cancel out, yielding the ratio of the final and initial angular velocities

in terms of known quantities. But note that | ;| = 27/ T; and |@ ;|= 27/ T, so substituting these equations into the
expression above yields

(4)

%‘I_J’ITJF _ RJ’ 3 Tj _ RJ’ 3 _ Rf 2_ & I 12 )2_ 4
The units work out nicely. Note also that this period is consistent with the observational data reported in the problem

statement.
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