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N7B.1 Since the car is traveling around the curve with a constant speed |7 |, the magnitude of Newton's second
law implies that | Foo|=m|d |= m| 7 |* /R, where R is the radius of the curve. The effective radius of the curve is
therefore

|3 [* (50 mi/h)? ( 1h

R=TaT = 0D @2[mi/N]/9)\ 36004

)=D.316 ﬂ‘ﬁ(%)=51ﬂ m.

https://sixideasapps.pomona.edu/SiLogin/ 171



11/10/2017 Solution Viewer

Unit: Chapter: Problem Number:

N v N7 v N7B.3 v I Return to User Page

J

N7B.3  Since the plane is flying in a level circle, its vertical acceleration is a. = (). However, because of its circular
motion, the plane must have a nonzero acceleration toward the circle’s center. At the particular instant shown in
figure N7.4 in the text, we have a, = 0 and a, = |7 [ /R, where |7 | = 320 mi/h is the plane’s speed and R is the
radius of its path. Newton’s second law at this instant requires that

~m|Z|* /R 0 —|F,|sin@
0 =mi=F,=| 0 |+ 0 (1)
0 ~m|g +|F |cos @

were m is the plane’s mass. The x component of this equation tells us that m|T[* /R =| 15;_ |sin@ and the z component
tells us that m| g | =| F; |cos 6. If we divide the first of these equations by the second, we get

K |7 [? (320 mifR)* [ 1m/§ )2 m?
L tan® = R=— - 10,700 ™ 107 km
Rlg| " [¢ltan® (9.8 m/FH)tan11°| 2.24 mith | m @)

Note that the units work out and the result is plausible.

| 2
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N7B.4  The radial part of the car’s acceleration has a magnitude of |7 F/R =0 m/s)/(200 m) = 2.0 m/s*. We are
told that the car is slowing down at a rate of 1.0 m/s*, so the component of the car’s acceleration in the direction of
its motion is d| @ | /dt = —1.0 m/s”. The magnitude of the car’s acceleration is thus

l|Ir dlﬁlz |5|2)2_ |lI." m2 ml_ m
(42d) + %) =y (~10 =) +(20 1) =224

( Note that a points somewhat backwards in this case.)

@ |=
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N7M.2 A picture of the situation and a free-body diagram of the car appear below.

N
Car, mass m T—> X

. Fy=mg
Known: R =310m, |7 |= 23 m/s
Unknown: |7|=? m=? |E,|=? |E:|=? |E|=

The car touches the road and the air, and interacts gravitationally with the earth. The contact interaction with the
road exerts a normal force Fy and a static friction force Fsr on the car, while the car’s interaction with the air exerts
a drag force FD and a buoyant force that I will ignore. The constraint on the car’s motion is that it moves over a hill
that can be approximated by a circle of radius R. We are also told that the car’s speed is constant, so it is undergoing
uniform circular motion, at least at the instant shown. Its acceleration is therefore upward (in the +z direction) with
a magnitude of |4 |= |7 [/ R. Newton's second law applied to the car then implies that

0 0 0 +|Jﬁ;r| —|ﬁﬂl
" 0 = 0 + 0 [+ 0O [+] 0 (1)
H3P/R] |-mlgl] [+ Eyl 0 0

Now, the x component of this equation implies that | I-:_-;F |= f':p |, but we really don’t care about the magnitude of these
forces. The z component of the equation implies that

— | - - |2
;1=|pw|_m|g'| or |pN|=mt;z| |Fyl _ 17]

mlgl RIg|

rmlgl = +1 )
Even though we don't know |I_3'N| or m separately, equation 2 gives us what we were asked to find (the ratio of the
normal force to the car’s weight) in terms of the known quantities |77 |,| ¢ |, and R, so we do not need to look for any
more equations to solve the problem. Substituting in the numbers yields

— 2
ol o @wET g g1741-117
Rlgl (310 m)(9.8 m/ &)
Note that the ratio of these forces should be unitless, consistent with the unit analysis in equation 3. This ratio is also

greater than 1, which makes sense because | Fyy | will need to be larger than | F, | if the net force on the car is to be
upward, as required for the car’s acceleration is to be upward. Therefore, this result seems quite plausible.

(3)
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N7TM.4 A drawing of the situation and a free-body diagram of the satellite appear below.

Satellite, mass m

o Known:
- . R = 1740 km
Px=ﬁfg_|” |*|tl|+|
3”1 3 3
Unknown:

< lo|=?2 m="7
X period of orbit T =7

Since the moon has no very little atmosphere, there no air friction force exerted on the satellite. Thus, the only
significant force acting on the satellite is the force of gravity due to its interaction with the moon. The satellite is
confined to a circular orbit around the moon. T am assuming that its orbital speed |7 | is constant and that it orbits
just barely above the moon’s surface, so that its orbital radius R is about equal to the moon's radius = 1740 km. If
all this is so, the satellite’s acceleration will point toward the moon’s center and have a magnitude of |7 |=|7 |*/R.
At the instant shown in the diagrams, both the net force and the satellite’s acceleration have components only in the
—z direction (according to the reference frame axes). At that instant, Newton’s second law in this case is given by

0 0
ml 0 |=] 0 = |3 =Ig.R=2gIR = |7]|=yLIgIR (1)
_lf‘;-|:l-flr-.Ilz —m|§m|

As shown, we can solve the z component of Newton's second law for |if' | in terms of known quantities, and the
unknown satellite mass m cancels out. But we need another equation to determine the remaining unknown T. If we
assume that the speed is constant, we can get the orbit’s period T from the relation |7 |=27R/T. Solving the latter
for T and substituting | | as found in e:qualion 1 yields

2aR _ 1740 dem [ 1000 ph
=2TV6 1=
5| |3|R Ve | |~ '1,- 9.8m/s?| 1km

Note that the units, sign and magnitude all seem reasonable (an object orbits the earth in about 1.5 h, so this result
has a credible magnitude).

1h
3600 §

T=

)=64901;( )=1.8h 2)
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N7M.5 Rear and top views of the situation and rear and top-view free-body diagrams of a car on the highway appear
below for both the level-highway and banked-highway cases:

Rear view: Top view: Known: Rear view: Top view:
Level road: R=33011 Level road:
|7 | = 60 mi/h

*a

a
—» X X
Car, |
IMEAs S 1
Banked road:

The car touches the road and the air. The contact interaction between the car and road will exert a normal force and
a static friction force on the car (assuming that its wheels don’t skid). The air will exert a rearward drag force on the
car. Assume the car is moving at a constant speed. Then the component of the car’s acceleration in the forward direc-
tion is zero, and (as the free-body diagrams show), the static friction force must at least cancel the drag force, but in
the level-highway scenario, that static friction force must also supply the required inward acceleration.
(a) If the highway is not banked, the x component of Newton's second law at the instant shown implies that the static
friction force must at least provide the inward acceleration:
= |2
|I-E.?|2F5F,.1'=ﬂra.1'=ﬂr% (l)

The z component of Newton’s second law implies that | I-:N |= m]| g |, and the definition of the coefficient of static
friction implies that f2.| Fy | = | Fs |. Substituting these things into the equation above yields

=12 - |2 it )2 ( 2
,.EJEn.ﬂ'rlg:;|2|JE_-;F|3_°:P:'a'ﬂ = .= lUL = (60 ) 2f 1mf{.h )(328&
R Rig| (330£)(98m/5?)\ 224mith || 1m

(b) This coefficient comes out unitless, as it must, but also is very high for the tire-road interface to manage (Table
N5.1 says that g, = 0.6 for tires and asphalt). So it is not reasonable to expect that static friction will be able to
supply sufficient sideward force to keep the car on the road.

(¢) The optimal banking angle for the road will be such that the x component of the tilted normal force provides
all of the inward force required to keep the car moving in a circle: |Fy, |sin@® =m|@|* /R. The z component of

Newton's second law in this case requires that | F;|cos @ = m| ¢ |. We can eliminate the unknown normal force
by taking the ratio of these two equations:

e o
Llfw/lsmﬂ —tan® = W|U|_’f’R
|F{|cos g |

The units work out and this is credible (though pretty steep, actually!).

(d) If we are designing this road with a curve this tight, then we must bank the road at something like this angle if
cars are going to stay with the curve. We saw in part (b) that a level road is completely impractical in this case.
If we don’t back the road at nearly this angle, cars will not be able to stay on the road if it is slippery. (On the

other hand. the hankine anele 15 so steen that cars at rest micht shide sidewavs down it when mad conditions are
https://sixideasapps.pomona.edu/SiLogin/

)= 0.73 2)

=0.73(as before) = 6=tan'0.73 =36° (3)
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N7M.7 A drawing of the situation and a free-body diagram of the ball appear below. Though the ball touches both
the string and the air, I am going to ignore any drag and buoyancy forces exerted by the air.

Known: m, [¢|, L, and @ (we are asked to
solve in terms of these).

Unknown: The time T it takes the ball to go
around once, also |7 |, |7 |,| Fr|, and R.

Ball,
Mass m

=T

F,=m|g|

P . . . s A i i - - |2 "
Because the ball is in uniform circular motion, the magnitude of its acceleration is |a |= | 7|7/ R. Newton's second
law for the ball at the instant shown is therefore

~|a| ~lo[*/R 0 ~|E|sin®
ml 0 |=m 0 = 0 + 0 (D
0 0 ~m|g | +| Fr|cos®

Since we have already eliminate |a |, the x and z components of this equation provide two equations in our four
remaining unknowns |7 |, |E;|. R, and T. But since the ball’s speed is constant, |7 | = 2ZR/T , and trigonometry im-
plies that R = Lsin®. So we have enough equations to solve. We can easily eliminate the unknown | F; | by dividing
the x component of equation 1 by the 7 component of equation 1:

-~ |2 - . -2
p{|vl+;’R=|h sin @ . |UL — nb @
wilg| [Ey| cos6 RIg|
Substituting in |7 |=27AR/T and R = Lsin® yields

1 /27R\  47°R ,  4m*(Lsin®) , Lsit® cos@
- == = T =—FF7—+=4 = - =4 -
ngl( T ) g|T? |¢[tan® " ¢l sin® r 1

o T=27 [L0S6 3)
1§l

Note that L/|g | has units of m/(m/s%) = s°, so the units of T will be correct. Note also that the period gets longer
as L gets longer or @ gets smaller or as the gravitational field strength | g | gets, weaker, which all seems plausible.

tan@ =

https://sixideasapps.pomona.edu/SiLogin/ 171



