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N10B.2 Equation N10.9 connects an oscillator’s frequency fto the spring constant &, of its spring and the mass m of
the oscillating object:

 cycle ;’E
f= 27 *«/ i ()

Solving for &, in this case yields

r 47 P m _ 47 (2.2 eyete [ #)°(0.30 kg)( IN ): 57N
" (cycle)’ (eyete)’ Lkgm/s*) = m

(2)
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N10B.4 This situation is an example of how we can apply the SHO model to atoms! Equation N10.9 connects the
atom’s oscillation frequency fto the spring constant &k, (where m is the atom’s mass):

fe cyde [k _4mfm _4m°(107 eycle /£)*(24)(167X 10 T kg)( 1N )zlmﬂ
2t Nom © (cycle)? (eyele P ‘Klkg'mfﬂz_ m

where 1.67 x 107 kg is the mass of a proton.
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N10B.6 Equation N10.29 relates the pendulum’s period T to its length L as follows: T = 277/L /| . Solving this
expression for the pendulum’s length yields

(%fﬂ; = L:'é'(%)zz(.g‘*‘%)(%&):“'mm'
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N10B.7 1If we model the child on the swing as a simple pendulum with length L, then its period T is (according to

equation N10.29)
L [ 32m
T=2m | = =271 =36 l
\/Igl V 9.8/ /s? ° ()

Note that the child’s mass 1s irrelevant.
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NIOM.3 The period will get longer. There are several ways that one might argue this. One way is to consider displac-
ing an object at the end of a spring some distance (thus stretching the spring) and then releasing the object from rest.
During the object’s subsequent motion, some of the potential energy stored in the spring must go to kinetic energy
in parts of the massive spring rather than being channeled entirely into kinetic energy of the object (as it would if
the spring were massless). This means that the object will move more slowly in an oscillation starting at a given
displacement than it would if the spring were massless, and thus take more time to cover the distance between the
endpoints of the oscillation.

Another way of saying the same thing is that when the object is oscillating, part of the tension in the spring
goes to accelerating parts of the spring, and so the actual tension on the end of the spring that is connected to the
object is smaller during periods of maximum acceleration than we would expect it to be. Again this means that the
object will move more slowly than we would expect it to from the “massless spring” approximation.

Doing the math to make a quantitative prediction of how much longer the period becomes is beyond the
level of this course (it is more appropriate for a sophomore or junior-level mechanics course). It turns out that using
a spring of mass m instead of a massless spring changes the system’s period by the same amount that adding £ m to
the mass of the object at the spring’s end would.
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N10OM.5 (a) An oscillation’s amplitude is the distance between the system’s equilibrium point and either extreme
of the oscillation, which means that the amplitude is half the distance between the extreme points (where the
oscillating object is at rest). In this case, the mass was at rest at its original position, so this is its upper extreme
point. We are told that the lower extreme point is 12 cm lower, so the distance between extreme points is 12 em.
The amplitude is thus half of this, so amplitude A = 6 cm.

(b) The point halfway between the extreme points (6 cm below the top point) is where the oscillating object could
hang at rest (that is, where there is no net force on the object that would cause it to accelerate away from rest).
In this case, two forces (an upward spring tension force and a downward gravitational force) act on the object: if
we are to have no net force on the object then these forces must be equal in magnitude: |f-:5|,, | =m| ¢ |. Because at
this point the spring is stretched from its equilibrium position by a distance | x|= 6 cm, this expression becomes
Iﬁ_.;l,,| =k|x|=m|g|. Solving this for k, we get

~m|§| (06kg)98mis?)| 1IN
T lx| 0.06 m | 1ke -mts?

(¢) We can find the object’s speed in general by taking the time derivative of the expression for the object’s position
as a function of time, which is x(t )= Acos (@t + 8) according to N11.8. So:

k )=93ﬂ (1)
m

U_T(r}z%z%Ams(ﬂ)t+8}=—Amsm(&)r+ﬂ] (2)

(assuming the x axis is vertical). This will have its largest magnitude when sin (@t +8)=%1, so

s o [k, (98N /m1kg m/s®
Ivmaxl—mA—JmA_v O.Gkg( -

}(0.06m)=0.77 m/s. (3)
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NI10OM.6 Let’s model the person on the rampoline as a mass hanging from a spring. (This is probably not a terrifi-
cally good model, because the trampoline’s surface stretches in complicated ways when someone sits on it, but,
as discussed in the text, it will still be a useful approximation almost no matter what the complexities are.) In this
model, the person’s equilibrium position 45 cm below the trampoline’s surface corresponds to the equilibrium posi-
tion of the mass on the spring, which we should set to x = 0. Equation N10.13 tells us that when x = 0 (since this
the equilibrium point), the net force exerted on the person will be zero, and k,x;=m § |1 where m 1s the person’s
mass and x is that person’s position when the trampoline is relaxed (in other words, 45 cm above the trampoline’s
equilibrium state when the person is sitting on it). So

m|g| 55%g(98m/g)} 1IN N

= = =1200— (1)
Xr 0.45 \lkg-mf,q’: m

Now that we know k,, we can use equation N10.8 to find the person’s period of oscillation T. (Again, we're assuming

that person never leaves the surface of the trampoline, so it is as if he or she remains attached to a spring). In this
case, equation N10.8 tells us that

k.

/ | 55kg [ 1IN
—ox [ —on | [
T 2?1’ I 2?1-1‘" IZMMJ’[mklkgmf{qz

):1355 )

Vokoo

Note that the units work out in both equations, and the period seems credible.
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NIOM.9 Equation N10.29 comes originally from applying Newton's second law to the pendulum. The small-angle
approximation enters between equations N10.26 and N10.27, where we had

¢ 13l . ¢ gl
=-gingg = e ——Tqi) (1)

dt? L
The approximation is necessary because equation N10.27 (the latter equation above) has the exact form of the har-
monic oscillator equation, not the previous equation. In making this approximation, we are essentially saying that

|I_5m|=—m|§|sin¢:—m|§|¢ (?-:'

Now think about the mathematical properties of ¢h and sing. The value of ¢b can increase without limit, whereas sin ¢
can only have values between —1 and + 1. It’s possible to show (by looking at the Taylor series if you've studied them
in calculus, or by trying values ¢ and sin¢ on your calculator) that sing < ¢ for all values of ¢b. Hence the exact
expression for the magnitude of the force (m| ¢ |sin ¢) will always be smaller than the approximate value (m| g | ).
If the actual magnitude of the force is smaller than the value we're assuming by using the approximation, the pendu-
lum bob will actually have a smaller acceleration than is implied by the approximation. If its acceleration is always
smaller, its speed will also always be smaller, and the pendulum will take longer to complete one oscillation than we
would predict from the approximation. Since this will be increasingly true as ¢b gets bigger, the period of a pendulum
will be longer at large amplitudes (where the approximation is poor for much of the swing) than at small amplitudes.
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