1. Note that dv/dt = 0 if and only if y = —3. Therefore, the constant function y(r) = —3 forall 7 is
the only equilibrium solution.

3. (a) The equilibrium solutions correspond to the values of P for which d P /dt = O for all 7. For this
equation, d P /dt = Qforallt if P =0or P = 230.

(b) The population is increasing if 4 P /dt = 0. Thatis, P(1 — P/230) = 0. Hence,0 < P < 230.

(¢) The population 1s decreasing if d P/dt < 0. That is, P(1 — P/230) < 0. Hence, P > 230 or
P < 0. Since this is a population model, P < 0 might be considered “nonphysical.”

4. (a) The equilibrium solutions correspond to the values of P for which d P /dt = 0 for all ¢. For this
equation, d P /dt =0 foralltif P =0, P =50,0r P = 200.
(b) The population is increasing if dP/dt > 0. Thatis, P < 0or 50 < P < 200. Note, P < 0
might be considered “nonphysical” for a population model.

(¢) The population is decreasing if d P /dr < 0. Thatis,0 < P < 50 or P = 200.

5. In order to answer the question, we first need to analyze the sign of the polynomial y> — y2 — 12y.
Factoring, we obtain

Y =y =12y =307 -y —12) =y(y —H(y +3).

(a) The equilibrium solutions correspond to the values of y for which dy/dt = 0 for all 7. For this
equation, dy/dt =0foralltif y=-3,y=0,0ory =4.

(b) The solution y(r) is increasing if dv/dr > 0. Thatis, -3 <y <Oory > 4.

(¢) The solution y(r) is decreasing if dv/dr < 0. Thatis,y < —3or0 < v < 4.
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7. The general solution of the differential equation dr/dt = —Ar is r(t) = roe * where r(0) = rg is
the initial amount.

(a) We have (1) = rpe ™ and r(5230) = ro/2. Thus
o
- =rpe

2

—A-5230

_ e—J-.~5230

E
o Bl= a2l =

I
I
S

- 5230

Il
|
S

- 5230

|
o]
=

because In1/2 = —1In2. Thus,

A= E a2 (0.000132533.

5230
(b) We have r(¢) = rpe ' and r(8) = rp/2. By a computation similar to the one in part (a), we
have

A= % ~ 0.0866434.

(e) If 7(¢) 1s the number of atoms of C-14, then the units for dr/dt is number of atoms per year.
Since dr fdt = —Jr, A 1s “per year.” Similarly, for I-131, A is “per day.” The unit of measure-
ment of 7 does not matter.

(d) We get the same answer because the original quantity, rp, cancels from each side of the equa-
tion. We are only concerned with the proportion remaining (one-half of the original amount).
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8. We will solve for k& percent. In other words, we want to find 7 such that 7(z) = (k/100)rg, and we
know that 7(1) = rge*', where A = (In2)/5230 from Exercise 7. Thus we have

k
i _ K
Fpe = 10[).?'[)
RYLS
100
k
' “(100)
k
_ ~ln(ww)
)
__ 100 —Ink
B A
_ 5230(1n 100 — Ink)
- — .

Thus, there is 88% left when r ~ 964.54 years; there is 12% left when ¢t ~ 15,998 years; 2% left
when t ~ 29,517 years; and 98% left when r ~ 152.44 years.

11. The solution of dR /dt = kR with R(0) = 4,000 1s
R(r) = 4,000,
Setting t = 6, we have R(6) = 4,000 ¢®® = 130,000. Solving for &, we obtain

k=3 (398%) ~0.58.
Therefore, the rabbit population in the year 2010 would be R(10) = 4,000 e03810) ~ 1321198
rabbits.

12. (a) In this analysis, we consider only the case where v is positive. The right-hand side of the dif-
ferential equation is a quadratic in v, and it is zero if v = ,/mg/k. Consequently, the solution
v(t) = /mg/k for all ¢ is an equilibrium solution. If 0 < v < /mg/k. then dv/dt > 0, and
consequently, v(r) is an increasing function. If v > /mg/k, then dv/dt < 0, and v(r) 1s a
decreasing function. In either case, v(t) — J/mg/k ast — 00.

(b) See part (a).

13. The rate of learning is dL /dt. Thus, we want to know the values of L between 0 and 1 for which
dL/dt i1s a maximum. As k& > 0 and dL /dt = k(1 — L), dL /dr attains it maximum value at L = 0.
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14. (a) Let Lq(r) be the solution of the model with L;(0) = 1/2 (the student who starts out knowing
one-half of the list) and L-(¢) be the solution of the model with L,(0) = 0 (the student who
starts out knowing none of the list). Attime r = 0,

—=20-LiO)=2(1-}) =1
and Jr
2
2 =20-LO)=2

Hence, the student who starts out knowing none of the list learns faster at time t = 0.

{(b) The solution L»(r) with L»(0) = 0 will learn one-half the list in some amount of time #, > 0.
For r > t4. L2(¢) will increase at exactly the same rate that L, (r) increases for r > 0. In other
words, L, (f) increases at the same rate as L1(r) at 7, time units later. Hence, Lo(r) will never

catch up to L,(7) (although they both approach 1 as r increases). In other words, after a very
long time Lo(7) =2 L1(t),but La(r) < Li(r).
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15. (a) We have Lg(0) = L 4(0) = 0. So Aly’s rate of learning at t = 0 is dL 4 /dr evaluated at t = 0.

Atr =0, we have

dL 4
—— =21-L =2
o ( A)

Beth’s rate of learning at r = 0 is

dL
5 _311-Lp?=3.
dr

Hence Beth’s rate is larger.
(b) In this case, Lg(0) = L 4(0) = 1/2. So Aly’s rate of learning at r = 0 1s

dL
A _2l—Ly=1
dr

because Ly = 1/2 att = 0. Beth’s rate of learning at r = 0 1s

dLp , 3
dr ( B =7

because Lp = 1/2 at t = 0. Hence Aly’s rate is larger.
(e) In this case, Lg(0) = L 4(0) = 1/3. So Aly’s rate of learning at r = 0 1s

dla 4
—_— =21 =Ly =—-.
r ( A) 3

Beth’s rate of learning atr =0 is

dLg 4
— = —=3(1—LgP?=-.
= ( B) 3

They are both learning at the same rate when 7 = 0.
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19. Several different models are possible. Let R(#) denote the rhinoceros population at time 7. The basic
assumption is that there 1s a minimum threshold that the population must exceed if it is to survive. In
terms of the differential equation, this assumption means that d R /dr must be negative if R is close
to zero. Three models that satisfy this assumption are:

e If & is a growth-rate parameter and M is a parameter measuring when the population is “too

small”, then
dR R
— =kR[——-1].
dt (M )

e If & is a growth-rate parameter and b is a parameter that determines the level the population will
start to decrease (R < b/k), then

dR
— =kR —b.
dr
o If & 1s a growth-rate parameter and b 1s a parameter that determines the extinction threshold,
then IR 5
— =kR — —.
dt R

In each case, if R is below a certain threshold, d R /dt is negative. Thus, the rhinos will eventually
die out. The choice of which model to use depends on other assumptions. There are other equations
that are also consistent with the basic assumption.
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20. (a) The relative growth rate for the year 1990 is

1 ds 1 ( 7.6 —35

—_—— = — | ——————— | =~ 0.387.
s(rydr 5.3\ 1991 — 1989)

Hence, the relative growth rate for the year 1990 is 38.7%.
(b) If the quantity s(¢) grows exponentially, then we can model it as s(¢) = sge*’, where s and &
are constants. Calculating the relative growth rate, we have

1 ds 1
—— = — (kspe® ) =k.
s(t) dt  sgett ( so¢ )

Therefore, if a quantity grows exponentially, its relative growth rate is constant for all 7.

(c) Year Rel. Growth Rate Year Rel. Growth Rate Year Rel. Growth Rate
1991 0.38 1997 0.23 2003 0.13
1992 0.38 1998 0.22 2004 0.13
1993 041 1999 0.24 2005 0.12
1994 0.38 2000 0.19 2006 0.09
1995 0.29 2001 0.12 2007 0.06
1996 0.24 2002 0.11

(d) As shown in part (b). the number of subscriptions will grow exponentially if the relative growth
rates are constant over time. The relative growth rates are (roughly) constant from 1991 to 1994,
after which they drop off significantly.

(e) If a quantity s(r) grows according to a logistic model, then

dt

so the relative growth rate
lds 5
(1=
5 dt ( N )

The right-hand side is linear in 5. In other words, if 5 1s plotted on the horizontal axis and the
relative growth rate is plotted on the vertical axis, we obtain a line. This line goes through the
points (0, k) and (N, 0).

21. (a) The term governing the effect of the interaction of x and y on the rate of change of x 1s +8xy.
Since this term is positive, the presence of y’s helps the x population grow. Hence, x 1is the
predator. Similarly, the term —d8xy in the dv/dr equation implies that when x = 0, ¥’s grow
more slowly, so v is the prey. If y = 0, then dx /dr < 0, so the predators will die out; thus, they
must have insufficient alternative food sources. The prey has no limits on its growth other than
the predator since, if x = 0, then dv/dt > 0 and the population increases exponentially.

(b) Since —fBxy is negative and +48xy 1s positive, x suffers due to its interaction with y and y ben-
efits from its interaction with x. Hence, x is the prey and y is the predator. The predator has
other sources of food than the prey since dv/dr > 0 even if x = 0. Also, the prey has a limit
on its growth due to the —aex?/N term.
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22. (a) We consider dx/dt in each system. Setting v = 0 yields dx/dr = 5x in system (i) and
dx/dt = x in system (i1). If the number x of prey is equal for both systems, dx/dt is larger in
system (1). Therefore, the prey in system (i) reproduce faster if there are no predators.

(b) We must see what effect the predators (represented by the y-terms) have on dx /dt in each sys-
tem. Since the magnitude of the coefficient of the xy-term is larger in system (i1) than in sys-
tem (1), y has a greater effect on dx /dt in system (i1). Hence the predators have a greater effect
on the rate of change of the prey in system (ii).

(¢) We must see what effect the prey (represented by the x-terms) have on dv/dt in each system.
Since x and y are both nonnegative, it follows that

-2y + %X}" < —2y + 6xy,

and therefore, if the number of predators is equal for both systems, dy/dt is smaller in sys-
tem (1). Hence more prey are required in system (1) than in system (ii1) to achieve a certain
growth rate.

23. (a) The independent variable is 7, and x and y are dependent variables. Since each xy-term is
positive, the presence of either species increases the rate of change of the other. Hence, these
species cooperate. The parameter « is the growth-rate parameter for x, and y is the growth-rate
parameter for v. The parameter NV represents the carrying capacity for x, but v has no carrying
capacity. The parameter § measures the benefit to x of the interaction of the two species, and §
measures the benefit to v of the interaction.

(b) The independent variable is 7, and x and v are the dependent variables. Since both xy-terms are
negative, these species compete. The parameter y is the growth-rate coefficient for x. and o is
the growth-rate parameter for y. Neither population has a carrying capacity. The parameter §
measures the harm to x caused by the interaction of the two species, and f measures the harm
to v caused by the interaction.
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1. (a) Let’s check Bob’s solution first. Since dv/df = 1 and

}’(r)+1_t+1_1
t+1  r4+1

1

Bob’s answer is correct.
Now let’s check Glen’s solution. Since dy/dr = 2 and

yoy+1 2642
t+1 41

Glen’s solution 1s also correct.
Finally let’s check Paul’s solution. We have dv/dr = 2t on one hand and

yoy+1  2-1

= =r5r—1
r4+1 r+1

on the other. Paul is wrong.

(b) At first glance, they should have seen the equilibrium solution v(r) = —1 for all ¢ because
dy/dt = 0 for any constant function and y = —1 implies that

y+1

0
r+1

independent of 7.
Strictly speaking the differential equation is not defined for + = —1, and hence the solutions are not
defined forr = —1.

5. (a) This equation 1s separable. (It is nonlinear and nonautonomous as well.)
(b) We separate variables and integrate to obtain

1
—dv= | *dt
fﬁ : [

1_r3+
33 7€
(1) = !
YWET e

where ¢ is any real number. This function can also be written in the form

¥ = P +k

where k is any constant. The constant function y(r) = 0 for all ¢ is also a solution of this
equation. It is the equilibrium solution at y = 0.
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7. We separate variables and integrate to obtain

dav
: = | dr.
.[2}'+1 f

We get
1
E]n|2}‘—|— I|=t+c¢

12y 4 1] = c1e”,

where ¢; = ¢’°. As in Exercise 22, we can drop the absolute value signs by replacing +c; with a
new constant k1. Hence, we have

2y + 1=k

1 2t
y= 3 (}cle - 1) ,
and letting &k = k1/2, v(t) = ke* — 1/2. Note that, for £ = 0, we get the equilibrium solution.

9. We separate variables and integrate to obtain

feyd_vzjdr

ey =1+c,

where ¢ is any constant. We obtain v(r) = In(r 4 ¢).

11. (a) This equation is separable.
(b) We separate variables and integrate to obtain

f%d}-‘:f{?f—l—?&)d!
v
1

—— =143t +k

Y
-1
12+ 3r+ &’
where £ is any constant. The constant function y(r) = 0 for all 7 is also a solution of this
equation. It is the equilibrium solution at y = 0.

v(r) =
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13. First note that the differential equation is not defined if y = 0.
In order to separate the variables, we write the equation as

dy t

dr y(@Z+1)

I
[}-‘d}-‘:f{z+1d3‘

}"2_]'1“2 1
T=3 =+ 1) +e¢

to obtain

where ¢ is any constant. So we get
Y =h (k(r2 n 1)) ,

where & = ¢2¢ (hence any positive constant). We have

¥(1) = £,/In (k12 + 1)),

where k is any positive constant and the sign 1s determined by the initial condition.

15. First note that the differential equation is not defined for vy = —1/2. We separate variables and
integrate to obtain
f(Z}-‘+1)d}' :f dt
Y4y =1+k,

where £ is any constant. So

1At +4k+1 —1x4dr+c
2 N 2 '

where c is any constant and the &+ sign is determined by the initial condition.
We can rewrite the answer in the more simple form

1
Y =—3+ Vit

where ¢; = k + 1/4. If & can be any possible constant, then ¢; can be as well.

y() =
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17. First of all, the equilibrium solutions are y = 0 and vy = 1. Now suppose v # Oand v # 1. We

separate variables to obtain
1
——dy= | dt =1t
[}'(l—r) ! f rmrre

where c is any constant. To integrate, we use partial fractions. Write

1 A B

Yi-» ¥ Iy
Wemusthave A=1and — A4+ B =0. Hence, A = B =1 and
1 1 1

TS B

Consequently,

1 v
— dy=hly|-hh|l—y|=In|—=
f.‘v‘(l—?v‘) . i 1= ‘1—}*

After integration, we have

=c1e’,

‘ .

|

where ¢; = € is any positive constant. To remove the absolute value signs, we replace the positive
constant ¢; with a constant & that can be any real number and get

ke'

."’(f):m:

where k = +c;. If £ = 0, we get the first equilibrium solution. The formula y(r) = ke’ /(1 + ke')
yields all the solutions to the differential equation except for the equilibrium solution v(r) = 1.
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19. The equation can be written in the form

dv
— = 1)(t* —2),
o (v+ 1) )
and we note that v(r) = —1 for all 7 is an equilibrium solution. Separating variables and integrating,
we obtain
f @ f 2 —24r
v+1

3
Injv+1|= 3 —2t+c,

where c is any constant. Thus,

3
|U+ 1| — Cle—ZT—Ff ,"'3,

where ¢; = €. We can dispose of the absolute value signs by allowing the constant ¢; to be any real
number. In other words,

v(t)=—-1+ k€_2:+:3;31
where & = dc;. Note that, if £ = 0, we get the equilibrium solution.

21. The function y(¢) = 0 for all 7 is an equialibrium solution.
Suppose v # 0 and separate variables. We get

1
f_v+—dy:fefrfr
¥

y?

5 +lalyl = 4o,
where ¢ 1s any real constant. We cannot solve this equation for y, so we leave the expression for v
in this implicit form. Note that the equilibrium solution y = 0 cannot be obtained from this implicit
equation.
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23. The constant function w(r) = 0 is an equilibrium solution. Suppose w # 0 and separate variables.
We get
[ dw [ dr
w ) ot

Injw|=n|f|+¢
=lIncilt],
where c is any constant and ¢; = ¢°. Therefore,
lw| = c1lz].

We can eliminate the absolute value signs by allowing the constant to assume positive or negative
values. We have
w = ki,

where & = Z¢;. Moreover, if £ = 0 we get the equilibrium solution.

25. Separating variables and integrating, we have

|
f—rf.r:[—.fde‘
X

2
Injx| = -3 +c
x| =kpe ™72,

where k&1 = ¢°. We can eliminate the absolute value signs by allowing the constant &) to be either
positive or negative. Thus, the general solution is

x(r) = ke_tzfz

where & = 4k, . Using the initial condition to solve for k., we have

1 0
ﬁ—l(@]—ké’ =k.

Therefore.
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27. Separating variables and integrating, we obtain

dv
—'2=—[a'r
).'
—— =—f+4c.
Y
So we get
|
y= .
Ir—c¢

Now we need to find the constant ¢ so that v(0) = 1/2. To do this we solve

11
2 0-c
and get ¢ = —2. The solution of the mitial-value problem is
= —
YO=7

29. We do not need to do any computations to solve this initial-value problem. We know that the constant
function v(¢) = 0 for all 7 is an equilibrium solution, and it satisfies the initial condition.

31. From Exercise 7, we already know that the general solution is

. 2 1
W(I) :"{e d - E)

so we need only find the constant & for which v(0) = 3. We solve
0 _ 1
I=ke — 5

for k and obtain £ = 7/2. The solution of the initial-value problem is

s T2t 1
",'(f) = EE - 3.
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33. We write the equation in the form

dx £2

dr x(3+ 1D

2
dx = d
[rdr= [ s

2 1
%=§m|:3+1|+c,

and separate variables to obtain

where ¢ 1s a constant. Hence,

2

x2=ZIn|? + 1]+ 2e.

il k2

The initial condition x(0) = —2 implies
4=(-2)>%= %hj|1| + 2e.

Thus, ¢ = 2. Solving for x(7), we choose the negative square root because x(0) is negative, and we
drop the absolute value sign because 7> + 1 > 0 for 7 near 0. The result is

x(t) = —\f% In(:3 + 1) + 4.

f dy =fm‘r
1—|—_1:2

2
arctan y = 3 +c,

[
tn

. We separate variables to obtain

where ¢ 1s a constant. Hence the general solution is

12
() = taﬂ(? +L‘.‘) )

Next we find ¢ so that y(0) = 1. Solving

=t -
= fan ?—l—t‘

yields ¢ = m /4, and the solution to the initial-value problem is

o=t 2w
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36. Separating variables and integrating, we obtain

j@y+hdr:[dr

v 4+3v=r+c

v2 43y — (t+¢) =0.
We can use the quadratic formula to obtain

}*:—%:I:«/.r+c.‘ .

where ¢; = ¢ + 9/4. Since ¥(0) = 1 > —3/2 we take the positive square root and solve

1=y(0)=-3+ /1,
so ¢; = 25/4. The solution to the initial-value problem is

y(t) = -3+t + 2.

37. Separating variables and integrating, we have

f%@:fm+Mm
.

1
—— =14+ +c
y
—1
y = ———F.
o244
Using v(1) = —1 we have
-1 -1
—]_: -‘]_ f f
() l+14+¢c 2+4¢’
so ¢ = —1. The solution to the initial-value problem is
) = s
WEris 1
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39. Let S(¢) denote the amount of salt (in pounds) in the bucket at time 7 (in minutes). We derive a
differential equation for S by considering the difference between the rate that salt is entering the
bucket and the rate that salt is leaving the bucket. Salt is entering the bucket at the rate of 1/4 pounds
per minute. The rate that salt is leaving the bucket 1s the product of the concentration of salt in the
mixture and the rate that the mixture is leaving the bucket. The concentration is §/5, and the mixture
is leaving the bucket at the rate of 1/2 gallons per minute. We obtain the differential equation

ds B 1 5§ 1

dt 4 5 2
which can be rewritten as

as _5—25’

dr 20

This differential equation is separable, and we can find the general solution by integrating

1 1
as= | —ar.
[5_25 fzo :

We have
_].IJIS—ESI :L—|—c
2 20
In|5 —285] :—i+cl
10

15 — 28] = cpe /10,

We can eliminate the absolute value signs and determine ¢» using the initial condition S(0) = 0 (the
water is initially free of salt). We have ¢» = 5, and the solution is

S(t) =2.5-2.5¢1% =251 — 119,

(a) When 7 = 1, we have S(1) = 2.5(1 — ¢ 91) a2 0.238 Ibs.

(b) When ¢ = 10, we have S(10) = 2.5(1 — e~ 1) =~ 1.58 Ibs.

(¢) When t = 60, we have S(60) = 2.5(1 — ¢=%) ~ 2.49 Ibs.

(d) When 1 = 1000, we have S(1000) = 2.5(1 — ¢~ 190) ~ 2.50 Ibs.

(e) When 1 is very large, the e~ 1/10 tarm is close to zero, so S(7) is very close to 2.5 Ibs. In this
case, we can also reach the same conclusion by doing a qualitative analysis of the solutions
of the equation. The constant solution S(r) = 2.5 is the only equilibrium solution for this

equation, and by examining the sign of dS/dr, we see that all solutions approach S = 2.5 as
t increases.
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40. Rewrite the equation as

dC
E — —le —|— (k]N"‘kZE)'!

separate variables, and integrate to obtain

1
dC = | dt
j —k1C+ (kN + 5 E) f

1
_r]n| —kC+k N+ bE|l=t+c
‘1

—k1C + k1N +koE = cie ™,

where c; is a constant determined by the initial condition. Hence,

Ct)y=N+ i—?E — cpe RIT
where ¢ 1s a constant.
(a) Substituting the given values for the parameters, we obtain
C (1) = 600 — cre™ 01,
and the initial condition C(0) = 150 gives ¢p = 450, which implies that
C (1) = 600 — 450e0-1.

Hence, C(2) =2 232.
(b) Using part (a), C(5) ~ 328.

(e) When 1 is very large, i very close to zero, so C(#) =~ 600. (We could also obtain this

conclusion by doing a qualitative analysis of the solutions.)
(d) Using the new parameter values and C(0) = 600 yields

C(t) = 300 + 300701,
so C(1) =571, C(5) ~ 482, and C(r) — 300 asr — oQ.

(e) Again changing the parameter values and using C(0) = 600, we have
C(t) = 500 + 1001,
so C(1) &= 590, C(5) ~ 560, and C(r) — 500 as tr — oq.
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41. (a) If we let & denote the proportionality constant in Newton’s law of cooling, the differential equa-
tion satisfied by the temperature T of the chocolate 1s

dT
— =Kk(T —70).
o ( )

We also know that 7(0) = 170 and that 4T /dt = —20 at t = (. Therefore, we obtain k£ by
evaluating the differential equation at t+ = 0. We have

—20 = k(170 — 70),

so k = —0.2. The initial-value problem is

dT
—=-02T-70), T(©)=170.

(b) We can solve the initial-value problem in part (a) by separating variables. We have

dTr
= [ -0.2dr
f Ir-170 f

|7 — 70| = 0.2 +k

1T — 70| = ce 0¥,

Since the temperature of the chocolate cannot become lower than the temperature of the room,
we can ignore the absolute value and conclude

T(t) =70+ ce .
Now we use the initial condition 7(0) = 170 to find the constant ¢ because
170 = T(0) = 70 + ce 2@,
which implies that ¢ = 100. The solution is
T =70+ 100 .
In order to find 7 so that the temperature is 110° F, we solve
110 = 70 + 100e ¥

for ¢ obtaining

so that
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43. (a) We rewrite the differential equation as
dv k
—=g(1-—2?).
ar ¢ ( mg v )
Letting @ = +/%/(mg) and separating variables, we have

dv
f—l—afzvz =[gd.r.

Now we use the partial fractions decomposition

1 B 1/2 N 1/2
1 —a2v2 l4av 1 —av

f duv +[ duv 2ot +
= 4 c
1+ av 1 —av & ’

where c 1s an arbitrary constant. Integrating the left-hand side, we get

to obtain

1
—(ln|1+av|—ln|1 —arv|) =2gt+c.
o

Multiplying through by o and using the properties of logarithms, we have

‘l+txv
= 2ugr +c.

1l —av

Exponentiating and eliminating the absolute value signs yields
1 +av

S
]l —av
Solving for v, we have
1 Ce2ast ]
V= & Corust +1°

Recalling that o = /k/(mg), we see that ag = \/kg/m, and we get
) = mg [ Ce>vke/mit _
PO =V T\ cavreme 1)
Note: If we assume that v(0) = 0, then C = 1. The solution to this initial-value problem
is often expressed in terms of the hyperbolic tangent function as

v = Ifﬁtan]:l( k—gr)
k m

(b) The fraction in the parentheses of the general solution

\/@ CeVTIm1 _ |
v() = K Ce2Vkgimyt 1/

tends to 1 as t — 00, so the limit of v(r) as t — 00 1s \/mg/k.
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(b) The solution with y(0) = 1/2 ap-
proaches the equilibrium value y = 1
from below as r increases. It decreases
toward y = 0 as 7 decreases.

9. (a) y

f"_'_'—‘-b\

N

(b) The solution y(z) with y(0) = 1/2 has
v(f) — 00 both as t increases and as
t decreases.

13. The slope field in the ty-plane 1s constant along vertical lines.
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14. Because f depends only on y (the equation is autonomous), the slope field is constant along hori-
zontal lines in the ry-plane. The roots of f correspond to equilibrium solutions. If f(v) = 0, the

corresponding lines in the slope field have positive slope. If f(y) < 0, the corresponding lines in the
slope field have negative slope.

&t )

16. (a) This slope field is constant along horizontal lines, so it corresponds to an autonomous equation.
The autonomous equations are (1), (i1), and (i11). This field does not correspond to equation (i1)
because it has the equilibrium solution ¥ = —1. The slopes are negative for vy < —1. Conse-
quently, this field corresponds to equation (1i1).

(b) Note that the slopes are constant along vertical lines—lines along which 7 is constant, so the
right-hand side of the corresponding equation depends only on . The only choices are equa-
tions (1v) and (vii1). Since the slopes are negative for /2 <t < /2. this slope field corre-
sponds to equation (viii).

(¢) This slope field depends both on v and on ¢, so it can only correspond to equations (v), (vi),
or (vii). Since this field has the equilibrium solution v = 0, this slope field corresponds to
equation (v).

(d) This slope field also depends on both y and on ¢, so it can only correspond to equations (v),
(vi), or (vi1). This field does not correspond to equation (v) because vy = 0 is not an equilib-

rium solution. Since the slopes are nonnegative for v > —1, this slope field corresponds to
equation (vi).
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