Table 1.1 y
Results of Euler’s method 60+ .
k t Vk my 0T
0 0 3 7 0T
1 05 65 14 30T ¢
2 10 135 28 207 .
3 15 275 56 10T . | . .
4 20 555 0.5 J 15 5 !
) Table 1.5 w
Results of Euler’s method 44
k% wg  mg 3T
0 0 4 -5 2T
1 1 -1 0 1+
2 2 -1 0 } } I f — ;
303 -1 0 3 L3 3 13
4 4 -1 0
5 5 -1
6. Table 1.6 w
Results of Euler's method (shown 4T
rounded to two decimal places) N - - - " »
k t s my. . - * "
0o 0 0 3 T
1 0.5 15 3.75 14
2 10 338 —164 | . . . .
3 15 255 158 T . 3 4 s !
4 20 335 —150
5 25 259 146
6 30 332 —140
7 35 262 136
8§ 40 331 —131
9 45 265 1.28
10 50 329

11. As the solution approaches the equilibrium solution corresponding to w = 3, its slope decreases. We
do not expect the solution to “jump over” an equilibrium solution (see the Existence and Uniqueness
Theorem in Section 1.5).
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14. Euler’s method 1s not accurate in either case because the step size is too large. In Exercise 5, the
approximate solution “jumps onto™ an equilibrium solution. In Exercise 6, the approximate solution
“crisscrosses” a different equilibrium solution. Approximate solutions generated with smaller values
of At indicate that the actual solutions do not exhibit this behavior (see the Existence and Uniqueness
Theorem of Section 1.5).

1. Since the constant function y;(#) = 3 for all 7 is a solution, then the graph of any other solution y(r)
with ¥(0) < 3 cannot cross the line y = 3 by the Uniqueness Theorem. So y(7) < 3 for all # in the
domain of y(r).

3. Because v2(0) < v(0) < v1(0), we know that
—12 = y(1) < ¥() < y1(1) =142

for all . This restricts how large positive or negative y(#) can be for a given value of ¢ (that 1s,
between —r2 and r + 2). Ast — —o00, v(f) — —oo between —t?andr +2 (v(t) - —o00 as
t — —o0 at least linearly, but no faster than quadratically).

5. The Existence Theorem implies that a solution with this imtial condition exists, at least for a small
t-interval about r = 0. This differential equation has equilibrium solutions vi(r) = 0, va(r) = 1,
and y3(r) = 3 for all 7. Since v(0) = 4, the Uniqueness Theorem implies that v(¢) > 3 for all 7 in
the domain of v(r). Also, dy/dt = 0 for all y = 3, so the solution y(r) is increasing for all 7 in its
domain. Finally, v(r) — 3ast — —00.

7. The Existence Theorem implies that a solution with this initial condition exists, at least for a small
t-interval about t = 0. Because 1 < ¥(0) < 3 and y1(¢r) = 1 and y»(r) = 3 are equilibrium solutions
of the differential equation, we know that the solution exists for all  and that 1 < v(r) < 3 forall ¢
by the Uniqueness Theorem. Also, dy/dt < 0for1 < y < 3,so dy/dt is always negative for this
solution. Hence, y(r) — last — o00.and y(r) — 3ast — —00.
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9. (a) To check that y;(r) = £2 is a solution, we compute

d’b‘l
- 7

dr !
and

—vidn A2t 42— = D 20D 2 -
= qf

Py

To check that y2(r) = % + 1 is a solution, we compute

dys
dr

=2t

and
—y% + v+ 2}*2:2 12— = D)2 )2
+2r - -1
= 2r.

(b) The initial values of the two solutions are v1(0) = 0 and y2(0) = 1. Thus if v(¢) is a solution

(c)

and v1(0) =0 < y(0) < 1 = y2(0), then we can apply the Uniqueness Theorem to obtain
i) =12 <y <>+ 1=»0)

for all 7. Note that since the differential equation satisfies the hypothesis of the Existence and
Uniqueness Theorem over the entire 7 y-plane, we can continue to extend the solution as long as
it does not escape to £00 in finite time. Since it is bounded above and below by solutions that
exist for all time, y(7) is defined for all time also.
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11. The key observation is that the differential equation is not defined when t = 0.

(a) Note that dv; /dt =0 and ylffz =0, s0 y1() is a solution.
(b) Separating variables, we have
dy dt
[5=]+

1/t where ¢ is any constant. Thus, for any real number c,

Solving for y we obtain v(7) = ce™
define the function y.(7) by

0 forr <0
velt) =

ce Y forr > 0.

For each ¢, y.(t) satisfies the differential equation for all r # 0.

—4 =+

There are infinitely many solutions of the
form ye(t) that agree with y () for ¢ < 0.

(e) Note that f(z, y) = y/t? is not defined at r = 0. Therefore, we cannot apply the Uniqueness
Theorem for the initial condition y(0) = 0. The “solution™ v.(r) given in part (b) actually
represents two solutions, one for 1 < 0 and one for ¢ > 0.
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13. (a) The equation is separable. We separate the variables and compute
f y 2 dy = f dt.

y(i) =

Solving for v, we obtain

c—2t
for any constant c¢. To find the desired solution, we use the mitial condition y(0) = 1 and obtain
¢ = 1. So the solution to the mnitial-value problem is

y() =

1
VI=2
(b) This solution 1s defined when —27 4+ 1 > 0, which 1s equivalent tor < 1/2.

(e¢) Ast — 1/27, the denominator of v(f) becomes a small positive number, so y(r) — 00. We
only consider + — 1/27 because the solution is defined only for # < 1/2. (The other “branch™
of the function 1s also a solution, but the solution that includes ¢ = 0 1n its domain i1s not defined
fort > 1/2) Ast — —00, y(t) — 0.

Page 5




17. This exercise shows that solutions of autonomous equations cannot have local maximums or mini-
mums. Hence they must be either constant or monotonically increasing or monotonically decreasing.
A useful corollary 1s that a function y(7) that oscillates cannot be the solution of an autonomous dif-
ferential equation.

(a) Note dy, /dt = 0 at t = 19 because y;(¢) has a local maximum. Because yj () is a solution, we
know that dvy /dt = f(v1(¢t)) for all ¢ in the domain of y; (). In particular,

_dn

0= at s = f(n(0)) = f (o),

so f(yo) =0.
(b) This differential equation is autonomous, so the slope marks along any given horizontal line are

parallel. Hence, the slope marks along the line ¥ = yp must all have zero slope.
(e) For all ¢,
dy: _d0o) _,

dr dt

because the derivative of a constant function is zero, and for all ¢

f(() = fy) =0.

So y2(t) is a solution.

(d) By the Uniqueness Theorem, we know that two solutions that are in the same place at the same
time are the same solution. We have vi(7g) = vo = v2(tp). Moreover, yi(r) is assumed to
be a solution, and we showed that y»(7) is a solution in parts (a) and (b) of this exercise. So
v1(#) = y2(z) for all 7. In other words, y1(¢) = vp for all 7.

(e) Follow the same four steps as before. We still have dy, /dr = 0 at t = 1 because y; has a local
minimum at ¢ = fp.
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18. (a) Solving forr, we get

3w\/3

3p\?/3
—Ar [ —
5(1) H(-fhr)

= cv(t)*/3,

Consequently,

where ¢ 1s a constant. Since we are assuming that the rate of growth of v(t) is proportional to
its surface area s(7), we have

23,
dt v

where & is a constant.

(b) The partial derivative with respect to v of dv/dt does not exist at v = 0. Hence the Uniqueness

Theorem tells us nothing about the uniqueness of solutions that involve v = 0. In fact, if we use
the techniques described in the section related to the uniqueness of solutions for dv/dr = 3v>/3,
we can find infinitely many solutions with this initial condition.

(e) Since it does not make sense to talk about rain drops with negative volume, we always have

v > 0. Once v > 0, the evolution of the drop is completely determined by the differential
equation.

What is the physical significance of a drop with v = 07 It is tempting to interpret the fact
that solutions can have v = 0 for an arbitrary amount of time before beginning to grow as a
statement that the rain drops can spontaneously begin to grow at any time. Since the model
gives no information about when a solution with v = 0 starts to grow, it is not very useful for
the understanding the initial formation of rain drops. The safest assertion 1s to say is the model
breaks down if v = 0.
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