Phase Line, Bifurcation solutions

1. The equilibrium points of dy/dt = f(y) are
the numbers y where f(v) = 0. For f(y) =
3v(y — 2), the equilibrium points are y = 0
and y = 2. Since f(¥v) is positive for vy < 0,
negative for 0 < v < 2, and positive for vy > 2,
the equilibrium point y = 0 is a sink and the
equilibrium point y = 2 is a source.
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The equilibrium points of dv/dt = f(v) are
the numbers y where f(v) = 0. For f(y) =
cos v, the equilibrium points are y = 7 /2 +
nmw,wheren =0,4+1,42,.... Sincecosy >
Ofor —m/2 < v < w/2 and cosy < 0 for
n/2 < v < 3m/2, we see that the equilib-
rium point at y = m/2 is a sink. Since the sign
of cos v alternates between positive and nega-
tive in a period fashion, we see that the equi-
librium points at vy = 7 /2 + 2nm are sinks and
the equilibrium points at y = 37 /2 + 2nm are
sources.

y=3m/2 source
y=mu/2 sink

y=-—m/2 source
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5. The equilibrium points of dw /dr = f(w) are
the numbers w where f(w) = 0. For f(w) =
(1 — w) sin w, the equilibrium points are w =
l and w = nmw, wheren = 0, £1, £2, ...
The sign of (1 — w) sin w alternates between
positive and negative at successive zeros. It is
negative for —m < w < 0 and positive for 0 <
w < 1. Therefore, w = 0 is a source, and the
equilibrium points alternate between sinks and
sources.

w=am source
w=1 sink
w—=0 source

9. The equilibrium points of dv/dt = f(y) are
the numbers y where f(v) = 0. For f(y) =
1 + cos vy, the equilibrium points are vy = ni,
where n = £1, £3, ... . Since f(v) is non-
negative for all values of y, all of the equilib-
rium points are nodes.

y=m node
y=—m node
y = —3m node
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11. The equilibrium points of dv/dt = f(y) are
the numbers y where f(v) = 0. For f(y) =
vIn|y|, there are equilibrium points at y =
+1. In addition, although the function f(y)
is technically undefined at y = 0, the limit of
f(v)asy — 01is 0. Thus we can treat y = 0
as another equilibrium point. Since f(v) < 0
fory < —land0 < vy < 1,and f(y) = 0 for
vy >land -1 < y <0,y = —1 1s a source,
v = 01s asink, and y = 1 1s a source.

y=1 # source

y=-—1 % source
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17. w
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23. The initial value y(0) = 2 is between the equilibrium points y = 2 — /2 and y = 2 + /2. Also,
dy/dt < 0for2—+/2 < y < 2++/2. Hence the solution is decreasing and tends toward v = 2 —~/2
ast — 00. It tends toward y = 2 + v/2 as t — —00.

25. The initial value v(0) = —4 is below both equilibrium points. Since dy/dt = O fory < 2 — V2,
the solution is increasing for all 7 and tends to the equilibrium point v = 2 — /2 as 1 — 00. As ¢
decreases, y(r) — —0oc< in finite time.

27. The initial value y(3) = 1 is between the equilibrium points y = 2 — /2 and y = 2 + /2. Also,
dy/dt <0for2—+/2 <y < 2+ /2. Hence the solution is decreasing and tends toward the smaller
equilibrium point y = 2 — V2 ast — o0. It tends toward the larger equilibrium point y = 2 + V2
ast — —00.

29, The function f(y) has two zeros dyo, where g is some positive number.
So the differential equation dy/dt = f(v) has two equilibrium solu-
tions, one for each zero. Also, f(v) <0if —yp <y < yand f(y) =0
if v <« —yp orif y > yp. Hence yp 1s a source and —yp 1s a sink.

Page 4




Phase Line, Bifurcation solutions

31. The function f(v) has three zeros. We denote them as y;, y», and vs3,
where v1 < 0 < ¥» < 3. So the differential equation dv/dt = f(v)
has three equilibrium solutions, one for each zero. Also, f(y) > 0if
y <y, f(y) <0ifyy <y<yand f(y) >0ify» <y < y3orif
v > y3. Hence y; is a sink, y» 1s a source, and y3 is a node.

33. Since there are two equilibrium points, the graph of f(v) must touch the y-axis at two distinct num-
bers v; and y». Assume that y; < yp. Since the arrows point up if v < y; and if vy > y», we must
have f(v) = Ofor vy < v; and for y > y». Similarly, f(v) < Ofory; < v < .

The precise location of the equilibrium points is not given, and the direction of the arrows on the
phase line is determined only by the sign (and not the magnitude) of f(v). So the following graph is
one of many possible answers.

)
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35. Since there are three equilibrium points (one appearing to be at y = 0), the graph of f(y) must touch
the y-axis at three numbers y;, y», and y3. We assume that y; < y» = 0 < y3. Since the arrows
point down for vy < yyand y» < ¥ < v3. f(v) < Ofor v < y; and for yv» < ¥ < y3. Similarly,
f)>0ify <y <ymandify > ys.

The precise location of the equilibrium points is not given, and the direction of the arrows on the
phase line is determined only by the sign (and not the magnitude) of (). So the following graph is

one of many possible answers.
/ -

)
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37.

39.

(a) This phase line has two equilibrium points, y = 0 and y = 1. Equations (i1), (iv). (v1), and (vii1)
have exactly these equilibria. There exists a node at vy = 0. Only equations (iv) and (viii) have
a node at v = 0. Moreover, for this phase line, dy/dt < 0 for v = 1. Only equation (viii)
satisfies this property. Consequently, the phase line corresponds to equation (viii).

(b) This phase line has two equilibrium points, y = 0 and y = 1. Equations (i1), (iv), (vi) and (vii1)
have exactly these equilibria. Moreover, for this phase line, dv/dt > 0 for y > 1. Only
equations (iv) and (vi) satisfy this property. Lastly, dv/dt = 0 for v < 0. Only equation (vi)
satisfies this property. Consequently, the phase line corresponds to equation (vi).

(e) This phase line has an equilibrium point at y = 3. Only equations (1) and (v) have this equilib-
rium point. Moreover, this phase line has another equilibrium point at y = 0. Only equation (1)
satisfies this property. Consequently, the phase line corresponds to equation (1).

(d) This phase line has an equilibrium point at y = 2. Only equations (ii1) and (vii) have this
equilibrium point. Moreover, there exists a node at y = 0. Only equation (vi1) satisfies this
property. Consequently, the phase line corresponds to equation (vii).

(a) In terms of the phase line with P > 0, there are three equilibrium points.
If we assume that f(P) is differentiable, then a decreasing population at
P = 100 implies that f(P) < 0 for P > 50. An increasing population P =50
at P = 25 implies that f(P) = 0 for 10 < P < 50. These assumptions
leave two possible phase lines since the arrow between P = 0 and P =
10 is undetermined.

(b) Given the observations in part (a), we see that there are two basic types of graphs that go with
the assumptions. However, there are many graphs that correspond to each possibility. The fol-
lowing two graphs are representative.

fF(P)

(¢) The functions f(P) = P(P — 10)(50 — P) and f(P) = P(P — 10)2(50 — P) respectively are
two examples but there are many others.
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41. The equilibrium points occur at solutions of dy/dt = y>+a = 0. For a > 0, there are no equilibrium
points. For a = 0, there is one equilibrium point, y = 0. For a < 0, there are two equilibrium points,

y = +./—a.

To draw the phase lines, note that:

eIfa > 0,dy/dt = v +a > 0, so the solutions are always increasing.
elfa=0,dy/dt > 0unless y = 0. Thus, y = 0 i1s a node.
sFora < 0,dy/dt < Ofor —/—a < v < 4/—a,and dy/dt > 0 for vy < —,/—a and for

y > 4/ —a.

F 9
A&
! —a »
 J 0 #» A
——a ¥
F 5
~
a-=1~0 a=~0 a=0

(a) The phase lines for @ < 0 are qualitatively the same, and the phase lines for @ > 0 are qualita-
tively the same.

(b) The phase line undergoes a qualitative change ata = 0.
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44, (a) The differential equation is not defined for y = —1 and ¥y = 2 and has no
equilibria. So the phase line has holes at v = —1 and y = 2. The function
fv) = 1/((yv — 2)(y + 1)) is positive for y > 2 and for vy < —1. Itis
negative for —1 < y < 2. Thus, the phase line to the right corresponds to this y=2
differential equation. Y

Since the value, 1/2, of the initial condition y(0) = 1/2 1s in the interval
where the function f(v) is negative, the solution is decreasing. It reaches y =
—1 in finite time. As ¢ decreases, the solution reaches y = 2 in finite time.

Strictly speaking, the solution does not continue beyond the values y = —1
and y = 2 because the differential equation is not defined for y = —1 and
y=2.

(b) We can solve the differential equation analytically. We separate variables and integrate. We get

f(.v _2)(y+ D dy = f dr

3 2
%— % —2v=r+ec,
where ¢ i1s a constant. Using v(0) = 1/2, we get ¢ = 13/12. Therefore the solution to the

initial-value problem is the unique solution y(#) that satisfies the equation
4y3 —6y* —24y — 24t +13=0

with —1 < v(r) < 2. It is not easy to solve this equation explicitly. However, in order to obtain
the domain of this solution, we substitute y = —1 and y = 2 into the equation, and we get
t = —9/8 and r = 9/8 respectively.

45. One assumption of the model is that, if no people are present, then the time between trains decreases
at a constant rate. Hence the term —a represents this assumption. The parameter @ should be posi-
tive, so that —a makes a negative contribution to dx /dt.

The term Bx represents the effect of the passengers. The parameter g should be positive so that
Bx contributes positively to dx /dr.
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46. (a) Solving fx — o = 0, we see that the equilibrium point is x = «/f.
(b) Since f(x) = Bx — @ 1s positive for x > «/p and negative for x < «/8, the equilibrium point

1S a source.
(e) and (d)
X

| .

s x=ua/f

(e) We separate the variables and integrate to obtain

ax —fd.r
Br—a

%ln|ﬂ.r—o:|=.f—|—c,

which yields the general solution x (1) = a/f + keP’, where k is any constant.

47. Note that the only equilibrium point is a source. If the initial gap between trains is too large, then x
will increase without bound. If it is too small, x will decrease to zero. When x = 0, the two trains are
next to each other, and they will stay together since x < 0 is not physically possible in this problem.

If the time between trains is exactly the equilibrium value (x = «/f). then theoretically x(r) is
constant. However, any disruption to x causes the solution to tend away from the source. Since it is
very likely that some stops will have fewer than the expected number of passengers and some stops
will have more, it is unlikely that the time between trains will remain constant for long.
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48. If the trains are spaced too close together, then each train will catch up with the one in front of it.
This phenomenon will continue until there is a very large time gap between two successive trains.
When this happens, the time between these two trains will grow, and a second cluster of trains will
form.

For the “B branch of the Green Line,” the clusters seem to contain three or four trains during
rush hour. For the “D branch of the Green Line.” clusters seem to contain only two trains or three
trains.

It is tempting to say that the trains should be spaced at time intervals of exactly «/f, and nothing
else needs to be changed. In theory, this choice will result in equal spacing between trains, but we
must remember that the equilibrium point, x = «/f. 1s a source. Hence, anything that perturbs x
will cause x to increase or decrease in an exponential fashion.

The only solution that is consistent with this model is to have the tramns run to a schedule that
allows for sufficient time for the loading of passengers. The trains will occasionally have to wait if
they get ahead of schedule, but this plan avoids the phenomenon of one tremendously crowded train
followed by two or three relatively empty ones.

2. The equilibrium points occur at solutions of dy/dt = y> + 3y + a = 0. From the quadratic formula,

we have
B 3449 —4a
= 5 )

Hence, the bifurcation value of a is 9/4. For a < 9/4, there are two equilibria, one source and one
sink. For a = 9/4, there 1s one equilibrium which is a node, and for a > 9/4, there are no equilibria.

).‘

'y
-3+ m l F Y
2
Y —3/2 & 'y
—3-V0-4 |
2 A
'3
a<9/4 a=9/4 a>9/4

Phase linesfora < 9/4,a = 9/4,and a = 9/4.
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2

3. The equilibrium points occur at solutions of dv/dr = y= — ay + 1 = 0. From the quadratic formula,

we have
_a + a2 —4
_T.

-

:‘.‘

If -2 < a < 2, then a®> — 4 < 0, and there are no equilibrium points. If 2 > 2 ora < —2, there
are two equilibrium points. For a = £2, there is one equilibrium point at v = @ /2. The bifurcations
occur at a = £2.

To draw the phase lines, note that:

e For -2 <a <2.dy/dt = y> —ay + 1 > 0, so the solutions are always increasing.
eFora=2.dv/dt =(v—1)>>0,and y = 1 is a node.

eFora=—-2,dy/dt =(y+1)>>0,and y = —1 is a node.

eFora < —2ora > 2 let

a—~ar—4 _a++ar-4

n=——7>—" ad y 7

Thendy/dt <0if vy < ¥y < y,anddy/dt > 0if y < yyory > y.

a++va?—4 1 ¢ a—JaZ—1

o

= 2
-1 r' -
a—+vaZ—4 F
-~ F
a< —2 a=—-2 —2<a<2 a=>2 az=2
The five possible phase lines.
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5. To find the equilibria we solve
0 -’ —4) =0,

obtaining v = +2 and vy = +,/& if @ > 0. Hence, there are two bifurcation values of &, @ = 0 and
a=4.

For o < 0, there are only two equilibria. The point y = —2 is a sink and y = 2 is a source. At
a = 0, there are three equilibria. There is a sink at y = —2, a source at y = 2, and a node at y = 0.
For 0 < a < 4, there are four equilibria. The point y = —2 is still a sink, y = —,/« is a source,
v = 4/a is a sink, and y = 2 is still a source.

For @ = 4, there are only two equilibria, vy = £2. Both are nodes. For @ > 4, there are four
equilibria again. The point v = —,/@ is a sink, y = —2 is now a source, y = 2 is now a sink, and
y = \/a is a source.

r 3 - ﬁ
2 2 9 2 2 2
¥ ﬁ
L J 0
{ _ﬁ
-2 & -2 -2 -2 -2
Iy 'y —,./E
a <0 a=0 D=a<4 a=4 o >4
7. We have
dy 4 2 2,2
77 =Yty =y 0T+

If @ = 0, there is one equilibrium point at vy = 0, and dv/dr > 0 otherwise. Hence, vy = 0 is a node.
If @ < 0, there are equilibria at y = 0 and y = ++/—a. From the sign of y* + ay?, we know
that y =0 is anode, y = —/—a is a sink, and y = ,/—« 1s a source.
The bifurcation value of @ is @ = 0. As @ increases through 0, a sink and a source come together
with the node at y = 0, leaving only the node. For @ < 0, there are three equilibria, and for ¢ > 0,
there is only one equilibrium.
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9. The bifurcations occur at values of & for which the graph of sin vy + « is tangent to the v-axis. That
s, =—landa =1.

For a < —1, there are no equilibria, and all solutions become unbounded in the negative direc-
tion as 7 increases.

If @ = —1, there are equilibrium points at v = 7 /2 + 2nmw for every integer n. All equilibria are
nodes, and as t — 00, all other solutions decrease toward the nearest equilibrium solution below the
given initial condition.

For —1 < a < 1, there are infinitely many sinks and infinitely many sources, and they alternate
along the phase line. Successive sinks differ by 2w . Similarly, successive sources are separated by
2.

As « increases from —1 to +1, nearby sink and source pairs move apart. This separation contin-
ues until « is close to 1 where each source is close to the next sink with larger value of y.

At o = 1, there are infinitely many nodes, and they are located at v = 37 /2 &+ 2nx for every
integer n. For @ > 1, there are no equilibria, and all solutions become unbounded in the positive
direction as f increases.

11. For @ = 0, there are three equilibria. There 1is a sink to the left of y = 0, a source at vy = 0, and a

sink to the right of y = 0.

As o decreases, the source and sink on the right move together. A bifurcation occurs at @ =~ —2.
At this bifurcation value, there is a sink to the left of y = 0 and a node to the right of vy = 0. For «
below this bifurcation value, there is only the sink to the left of y = 0.

As  increases from zero, the sink to the left of ¥ = 0 and the source move together. There is a
bifurcation at @ =~ 2 with a node to the left of y = 0 and a sink to the right of y = 0. For « above
this bifurcation value, there is only the sink to the right of y = 0.

13. (a) Each phase line has an equilibrium point at vy = 0. This corresponds to equations (1), (iii),
and (vi). Since y = 0 1s the only equilibrium point for A < 0, this only corresponds to equa-
tion (1i1).

(b) The phase line corresponding to A = 0 is the only phase line with y = 0 as an equilibrium
point, which corresponds to equations (ii), (iv), and (v). For the phase lines corresponding to
A < 0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the
phase lines corresponding to A > 0, note that dy/dt < 0 for —/A < v < A/A. Consequently,
the bifurcation diagram corresponds to equation (v).

(¢) The phase line corresponding to A = 0 1s the only phase line with y = 0 as an equilibrium
point, which corresponds to equations (i1), (iv), and (v). For the phase lines corresponding to
A < 0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the
phase lines corresponding to A > 0, note that dy/dt > 0 for —/A < v < A/A. Consequently,
the bifurcation diagram corresponds to equation (iv).

(d) Each phase line has an equilibrium point at y = 0. This corresponds to equations (1), (111),
and (vi). The phase lines corresponding to A > 0 only have two nonnegative equilibrium
points. Consequently, the bifurcation diagram corresponds to equation (1).
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18. (a)
(b)
19. (a)
(b)
(e)

For all C = 0, the equation has a source at P = C/k, and this 1s the only equilibrium point.
Hence all of the phase lines are qualitatively the same, and there are no bifurcation values for C.

If P(0) = C/k, the corresponding solution P(r) — 00 at an exponential rate as 7 — 00, and if
P(0) < C/k. P(r) - —o0, passing through “extinction”™ (P = 0) after a finite time.

A model of the fish population that includes fishing is

dP P

o= 2P — 0 3L,
where L is the number of licenses issued. The coefficient of 3 represents the average catch of 3
fish per year. As L is increased, the two equilibrium points for L = 0 (at P = 0 and P = 100)
will move together. If L is sufficiently large, there are no equilibrium points. Hence we wish to
pick L as large as possible so that there 1s still an equilibrium point present. In other words, we
want the bifurcation value of L. The bifurcation value of L occurs if the equation

dP P?

— =2P - — 3L =0

dt 50
has just one solution for P in terms of L. Using the quadratic formula, we see that there is
exactly one equilibrium point if L = 50/3. Since this value of L is not an integer, the largest

number of licenses that should be allowed 1s 16.

If we allow the fish population to come to equilibrium then the population will be at the carrying
capacity, which is P = 100 if L = 0. If we then allow 16 licenses to be issued, we expect that
the population is a solution to the new model with L = 16 and initial population P = 100. The
model becomes

dP p?
= = 2P — 0" 48,
which has a source at P = 40 and a sink at P = 60.

Thus, any initial population greater than 40 when fishing begins tends to the equilibrium

level P = 60. If the initial population of fish was less than 40 when fishing begins, then the
model predicts that the population will decrease to zero in a finite amount of time.
The maximum “number” of licenses is 16%. With L = 16%, there is an equilibrium at P = 50.
This equilibrium 1s a node, and if P(0) > 50, the population will approach 50 as 7 increases.
However, it is dangerous to allow this many licenses since an unforeseen event might cause the
death of a few extra fish. That event would push the number of fish below the equilibrium value
of P = 50. In this case, d P /dt < 0, and the population decreases to extinction.

If, however, we restrict to L = 16 licenses, then there are two equilibria, a sink at P = 60
and source at P = 40. As long as P(0) > 40, the population will tend to 60 as r increases. In
this case, we have a small margin of safety. If P = 60, then it would have to drop to less than
40 before the fish are in danger of extinction.
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20. (a) £(S)

N

(b) The bifurcation occurs at N = M. The sink at § = N coincides with the source at S = M and
becomes a node.

(¢) Assuming that the population S(r) is approximately N, the population adjusts to stay near the
sink at § = N as N slowly decreases. If N < M, the model is no longer consistent with the
underlying assumptions.
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23. (a) If @ < 0, there is a single equilibrium point at v = 0, and it is a sink. For @ > 0, there are
equilibrium points at y = 0 and y = £4/a. The equilibrium point at y = 0 is a source, and the
other two are sinks.

y=+/a
]
L J y:[:l
r 3
y=—+a
a=>0 a=0

Phase lines for dy/dt = ay — }’3.

(b) Given the results in part (a), there is one bifurcation value, a = 0.
(¢) The equilibrium points satisfy the cubic equation

r+a}=—y3:[}.

Rather than solving it explicitly, we rely on PhaseLines.

If » = 0, there is a positive bifurcation value @ = ag. For @ < ap, the phase line has one
equilibrium point, a positive sink. If a > ag, there are two negative equilibria in addition to the
positive sink. The larger of the two negative equilibria is a source and the smaller 1s a sink.

The bifurcation diagram for r = 0.8.
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(d) If r < 0, there is a positive bifurcation value a = ap. For a < ap, the phase line has one
equilibrium point, a negative sink. If @ > agp, there are two positive equilibria in addition to the
negative sink. The larger of the two positive equilibria is a sink and the smaller is a source.

The bifurcation diagram for r = —0.8.

Page 17




