2.1 and 2.2 solutions

7. The population starts with a relatively large rabbit (R) and a relatively small fox (F) population.
The rabbit population grows, then the fox population grows while the rabbit population decreases.
Next the fox population decreases until both populations are close to zero. Then the rabbit popula-
tion grows again and the cycle starts over. Each repeat of the cycle is less dramatic (smaller total
oscillation) and both populations oscillate toward an equilibrium which is approximately (R, F) =
(1/2,3/2).

8. (a) R, F

s 24 R(r) F
/ / (r)

(b) Each of the solutions tends to the equilibrium point at (R, F) = (5/4, 2/3). The populations
of both species tend to a limit and the species coexist. For curve B, note that the F-population
initially decreases while R increases. Eventually F bottoms out and begins to rise. Then R
peaks and begins to fall. Then both populations tend to the limit.

9. By hunting, the number of prey decreases @ units per unit of time. Therefore, the rate of change
dR /dt of the number of prey has the term —a. Only the equation for d R /dt needs modification.
(i) dR/dr =2R — 1.2RF —«
(1) dR/di = R(2 — R) — 1.2RF —«

10. Hunting decreases the number of predators by an amount proportional to the number of predators
alive (that 1s, by a term of the form —kF), so we have dF /dt = —F + 0.9RF — kF in each case.

11. Since the second food source 1s unlimited, if R = 0 and £ is the growth parameter for the predator
population, F' obeys an exponential growth model, d F /dt = kF . The only change we have to make
is in the rate of F, dF /dt. For both (i) and (1), dF /dt = kF +0.9RF.
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2.1 and 2.2 solutions

12.

13.

14.

19.

In the absence of prey, the predators would obey a logistic growth law. So we could modify both
systems by adding a term of the form —&F /N, where £ is the growth-rate parameter and N is the
carrying capacity of predators. That is, we have dF /dt = kF(1 — F/N) +09RF.

If R — 5F > 0, the number of predators increases and, if R — 5F < 0, the number of predators
decreases. Since the condition on prey is same, we modify only the predator part of the system. the
modified rate of change of the predator population is

dF
- = —F +09RF + k(R — 5F)

where £ > 0 is the immigration parameter for the predator population.

In both cases the rate of change of population of prey decreases by a factor of £ F . Hence we have
(1) dR/dr =2R — 1.2RF —kF
(i) dR/dt =2R — R> — 1.2RF —kF

. Suppose y = 1. If we can find a value of x such that dy/dr = 0, then for this x and y = 1 the

predator population is constant. (This point may not be an equilibrium point because we do not know
if dx /dt = 0.) The required value of x 1s x = 0.05 in system (1) and x = 20 in system (i1). Survival
for one unit of predators requires 0.05 units of prey in (i) and 20 units of prey in (ii). Therefore, (i) is
a system of inefficient predators and (i1) is a system of efficient predators.

(a) Substituting v(r) = sinf into the left- (h)

hand side of the differential equation H
gives
dzy dz(sinrj_l_ -
— 4 y= sin
dr2 - dr? Y
= —sinf + sint
=0, ~

so the left-hand side equals the right-
hand side for all 7.

(¢) These two solutions trace the same curve in the yv-plane —the unit circle.

(d) The difference in the two solution curves is in how they are parameterized. The solution in this
problem is at (0, 1) at time + = 0 and hence it lags behind the solution in the section by m/2.
This information cannot be observed solely by looking at the solution curve in the phase plane.
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2.1 and 2.2 solutions

22. (a) First, we need to determine the spring constant k. Using Hooke’s law, we have 4 1bs = & - 4 m.
Thus, £ = 1 lbs/in = 12 Ibs/ft. We will measure distance in feet since the mass 1s extended
1 foot.
To determine the mass of a 4 Ib object, we use the fact that the force due to gravity is mg
where g = 32 ft/sec’. Thus,m = 4/32 = 1/8.

Using the model
d?y N k_ 0
dr> m“. -
for the undamped harmonic oscillator, we obtain
d 2)-‘ '
di?

as our initial-value problem.

(b) From Exercise 20 we know that v(r) = cos it 1s a solution to the differential equation for
the simple harmonic oscillator, where g = /k/m. Since y(t) = cos /961 satisfies both our
differential equation and our initial conditions, it is the solution to the initial-value problem.

23. An extra firm mattress does not deform when you lay on it. This means that it takes a great deal of
force to compress the springs so the spring constant must be large.

25. Suppose @ > 0 1s the reaction rate constant for A+B — C. The reaction rate is aab at time 7, and
after the reaction, a and b decrease by aab. We therefore obtain the system

d

a’_{: = —aab
db

E = —O'.'(Ib.

26. Measure the amount of C produced during the short time interval from r = 0 to r = At. The amount
is given by a(0) — a(At) since one molecule of A yields one molecule of C. Now

4O —alan ., _40) = «a()b(0).
At

Since we know a(0), a(Ar), £(0), and Az, we can therefore solve for «.

27. Suppose ky and k> are the rates of increase of A and B respectively. Since A and B are added to the
solution at constant rates, k1 and &, are added to da/dt and db/dt respectively. The system becomes

ZI—? =k1 —aab
db
= =ky —aab
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2.1 and 2.2 solutions

28. The chance that two A molecules are close is proportional to a>. Hence, the new system is

da

- =k, — aab — ya®
db
= =ky — aab,

where y 1s a parameter that measures the rate at which A combines to make D.

29. Suppose y i1s the reaction-rate coefficient for the reaction B + B — A. By the reaction, two B’s
react with each other to create one A. In other words, B decreases at the rate yb> and A increases at
the rate y52 /2. The resulting system of the differential equations is

da yb?
— — ) —gab 4+ —
o 1 —oab 4+ 7
db

= =ky — aab — yb.

30. The chance that two B’s and an A molecule are close is proportional to ab’, so

d

d_(: =k — aab — yab2
db

- =ky —aab — Zyabz,

where y 1s the reaction-rate parameter for the reaction that produces D from two B’s and an A.

1. (a) V(x,y)=(1,0) (b) See part (c).
() (d)
¥ ¥
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(e) As 1 increases, solutions move along horizontal lines toward the right.
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2.1 and 2.2 solutions

3. (@ V(y,v)=(-v,y) (b) See part (c).

(@) , @
-
>

Z

(e) Ast increases, solutions move on circles around (0, 0) in the counter-clockwise direction.

4, @ Vu,vy=w—-1v-1) (b) See part (c).

5. (@) V(x,y) =(x,—y) (b) See part (c).
(e) y (d) y
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(e) As t increases, solutions move toward the x-axis in the y-direction and away from the y-axis
in the x-direction.
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2.1 and 2.2 solutions

7. (a) Letv =dy/dr. Then (b) See part (c).

dv d?y L
ar dz
Thus the associated vector field is
V(y,v) = (v, y).
© .
NV - Fuf— T o

NN At
\\‘::#/frrr
fff44’11rt1y
4 J{{hx\xxxﬁ
I LA

(e) As t increases, solutions in the 2nd and 4th quadrants move toward the origin and away from
the line vy = —wv. Solutions in the 1st and 3rd quadrants move away from the origin and

toward the line y = v.

11. (a) There are equilibrium points at (£1, 0), so only systems (i1) and (vii) are possible. Since the
direction field points toward the x-axis if y # 0, the equation dy/dtr = y does not match this
field. Therefore, system (vii) is the system that generated this direction field.

(b) The origin is the only equilibrium point, so the possible systems are (iii), (iv), (v), and (viii).
The direction field is not tangent to the y-axis, so it does not match either system (iv) or (v).
Vectors point toward the origin on the line vy = x, so dv/dt = dx/dt if y = x. This condition
1s not satisfied by system (i11). Consequently, this direction field corresponds to system (viii).

(¢) The origin is the only equilibrium point, so the possible systems are (1i1), (iv), (v), and (viii).
Vectors point directly away from the origin on the y-axis, so this direction field does not cor-
respond to systems (iii) and (viii). Along the line y = x, the vectors are more vertical than
horizontal. Therefore, this direction field corresponds to system (v) rather than system (iv).

(d) The only equilibrium point is (1, 0), so the direction field must correspond to system (vi).
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2.1 and 2.2 solutions

12. The equilibrium solutions are those solutions for which dR /dr = 0 and d F /dt = 0 simultaneously.
To find the equilibrium points, we must solve the system of equations

2R (1 — %) —12RF =0

—F 4+ 09RF =0.

The second equation is satisfied if /7 = 0 or if R = 10/9, and we consider each case inde-

pendently. If F = 0, then the first equation is satisfied if and only if R = 0 or R = 2. Thus two
equilibrium solutions are (R, F) = (0,0) and (R, F) = (2,0).

If R = 10/9, we substitute this value into the first equation and obtain F = 20/27.

13. (a) To find the equilibrium points, we solve the system of equations
dx —Ty+4+2=0
3x4+6v—1=0.

These simultaneous equations have one solution, (x, y) = (—1/9,2/9).

(b) ¥ ¥
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(e) As 1 increases, typical solutions spiral away from the origin in the counter-clockwise direction.
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2.1 and 2.2 solutions

14. (a) To find the equilibrium points, we solve the system of equations
4R —-TF -1=0
JR+6F —-12=0.

These simultaneous equations have one solution, (R, F) = (2, 1).
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(b) As 1 increases, typical solutions spiral away from the equilibrium point at (2, 1)
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2.1 and 2.2 solutions

21. (a) The x(7)- and v(r)-graphs are periodic, so

they correspond to a solution curve that re-
turns to its initial condition in the phase
plane. In other words, its solution curve
is a closed curve. Since the amplitude of
the oscillation of x(r) is relatively large,
these graphs must correspond to the outer-
most closed solution curve.

(b) The graphs are not periodic, so they cannot

correspond to the two closed solution curves
in the phase portrait. Both graphs cross the 7-
axis. The value of x(r) is initially negative,
then becomes positive and reaches a max-
imum, and finally becomes negative again.
Therefore, the corresponding solution curve
is the one that starts in the second quadrant,
then travels through the first and fourth quad-
rants, and finally enters the third quadrant.

(¢) The graphs are not periodic, so they cannot

correspond to the two closed solution curves
in the phase portrait. Only one graph crosses
the r-axis. The other graph remains negative
for all time. Note that the two graphs cross.

The corresponding solution curve is the
one that starts in the second quadrant and
crosses the x-axis and the line y = x as it
moves through the third quadrant.

(d) The x(z)- and y(z)-graphs are periodic, so

they correspond to a solution curve that re-
turns to its initial condition in the phase
plane. In other words, its solution curve
is a closed curve. Since the amplitude of
the oscillation of x(r) is relatively small,
these graphs must correspond to the inter-
most closed solution curve.
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2.1 and 2.2 solutions

23. Since the solution curve spirals into the origin, the corresponding x (#)- and y(r)-graphs must oscillate
about the 7-axis with the decreasing amplitudes.

x, ¥
1 y(#)

v
/N 9. %
/ / / N\
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x(t)
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24. Since the solution curve is an ellipse that 1s centered at (2, 1), the x(r)- and y(r)-graphs are periodic.
They oscillate about the linesx =2 and y = 1.

X, ¥

44 x(1)

e

3+ y(t)

|
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25. The x(r)-graph satisfies —2 < x(0) < —1 and increases as ¢ increases. The v(r)-graph satisfies

1 < v(0) < 2. Imitaally it decreases until it reaches its minimum value of y = 1 when x = 0. Then it
increases as / Icreases.

X,y
()
14
t
4 x(t)
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2.1 and 2.2 solutions

26. The x(t)-graph starts with a small positive value and increases as ¢ increases. The y(r)-graph starts
at approximately 1.6 and decreases as r increases. However, y(¢) remains positive for all 7.

x(t)

/ y(1)
|3
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