$$(3 - \lambda)(-2 - \lambda) = 0,$$

and therefore the eigenvalues are $\lambda_1=-2$ and $\lambda_2=3$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -2$, we solve the system of equations

$$\begin{cases} 3x_1 + 2y_1 = -2x_1 \\ -2y_1 = -2y_1 \end{cases}$$

and obtain $5x_1 = -2y_1$.

Using the same procedure, we see that the eigenvectors (x_2, y_2) for $\lambda_2 = 3$ must satisfy the equation $y_2 = 0$.

(d) One eigenvector V_1 for λ_1 is $V_1 = (-2, 5)$, and one eigenvector V_2 for λ_2 is $V_2 = (1, 0)$. Given the eigenvalues and these eigenvectors, we have the two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-2t} \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $Y_1(t)$.

The x(t)- and y(t)-graphs for $Y_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{-2t} \begin{pmatrix} -2 \\ 5 \end{pmatrix} + k_2 e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

$$(-4 - \lambda)(-3 - \lambda) - 2 = \lambda^2 + 7\lambda + 10 = 0$$
,

and therefore the eigenvalues are $\lambda_1=-2$ and $\lambda_2=-5$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -2$, we solve the system of equations

$$\begin{cases}
-4x_1 - 2y_1 = -2x_1 \\
-x_1 - 3y_1 = -2y_1
\end{cases}$$

and obtain $y_1 = -x_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $x_2 = 2y_2$ for $\lambda_2 = -5$.

(d) One eigenvector V_1 for λ_1 is $V_1 = (1, -1)$, and one eigenvector V_2 for λ_2 is $V_2 = (2, 1)$. Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{-5t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $Y_1(t)$.

The x(t)- and y(t)-graphs for $Y_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 e^{-5t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

3. (a) The eigenvalues are the roots of the characteristic polynomial, so they are the solutions of

$$(-5 - \lambda)(-4 - \lambda) - 2 = \lambda^2 + 9\lambda + 18 = 0.$$

Therefore, the eigenvalues are $\lambda_1 = -3$ and $\lambda_2 = -6$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -3$, we solve the system of equations

$$\begin{cases}
-5x_1 - 2y_1 = -3x_1 \\
-x_1 - 4y_1 = -3y_1
\end{cases}$$

and obtain $y_1 = -x_1$.

Using the same procedure, we obtain the eigenvalues (x_2, y_2) where $x_2 = 2y_2$ for $\lambda_2 = -6$.

(c)

(d) One eigenvector V_1 for $\lambda_1=-3$ is $V_1=(1,-1)$, and one eigenvector V_2 for $\lambda_2=-6$ is $V_2=(2,1)$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{-6t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $Y_1(t)$.

the x(t)- and y(t)-graphs for $Y_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 e^{-6t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

$$(2 - \lambda)(4 - \lambda) + 1 = \lambda^2 - 6\lambda + 9 = 0$$
,

and therefore there is only one eigenvalue, $\lambda = 3$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda = 3$, we solve the system of equations

$$\begin{cases} 2x_1 + y_1 = 3x_1 \\ -x_1 + 4y_1 = 3y_1 \end{cases}$$

and obtain $y_1 = x_1$.

(c)

(d) One eigenvector V for λ is V = (1, 1). Given this eigenvector, we have the solution

$$\mathbf{Y}(t) = e^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

The x(t)- and y(t)-graphs (which are identical) for Y(t)

(e) Since the method of eigenvalues and eigenvectors does not give us a second solution that is linearly independent from $\mathbf{Y}(t)$, we cannot form the general solution.

$$\left(-\frac{1}{2}-\lambda\right)^2=0,$$

and therefore there is only one eigenvalue, $\lambda = -1/2$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda = -1/2$, we solve the system of equations

$$\begin{cases} -\frac{1}{2}x_1 = -\frac{1}{2}x_1 \\ x_1 - \frac{1}{2}y_1 = -\frac{1}{2}y_1 \end{cases}$$

and obtain $x_1 = 0$.

(d) Given the eigenvalue $\lambda = -1/2$ and the eigenvector $\mathbf{V} = (0, 1)$, we have the solution

$$\mathbf{Y}(t) = e^{-t/2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

The x(t)- and y(t)-graphs for Y(t).

(e) Since the method of eigenvalues and eigenvectors does not give us a second solution that is linearly independent from $\mathbf{Y}(t)$, we cannot form the general solution.

$$(5-\lambda)(-\lambda)-36=0,$$

and therefore the eigenvalues are $\lambda_1=-4$ and $\lambda_2=9.$

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -4$, we solve the system of equations

$$\begin{cases} 5x_1 + 4y_1 = -4x_1 \\ 9x_1 = -4y_1 \end{cases}$$

and obtain $9x_1 = -4y_1$.

Using the same procedure, we see that the eigenvectors (x_2, y_2) for $\lambda_2 = 9$ must satisfy the equation $y_2 = x_2$.

(d) One eigenvector V_1 for λ_1 is $V_1 = (4, -9)$, and one eigenvector V_2 for λ_2 is $V_2 = (1, 1)$. Given the eigenvalues and these eigenvectors, we have the two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-4t} \begin{pmatrix} 4 \\ -9 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{9t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- The x(t)- and y(t)-graphs for $Y_1(t)$.
- The (identical) x(t)- and y(t)-graphs for $Y_2(t)$.
- (e) The general solution to this linear system is

$$\mathbf{Y}(t) = k_1 e^{-4t} \begin{pmatrix} 4 \\ -9 \end{pmatrix} + k_2 e^{9t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$(3 - \lambda)(-\lambda) - 4 = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1) = 0$$

and therefore the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 4$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -1$, we solve the system of equations

$$\begin{cases} 3x_1 + 4y_1 = -x_1 \\ x_1 = -y_1 \end{cases}$$

and obtain $y_1 = -x_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $x_2 = 4y_2$ for $\lambda_2 = 4$.

(c)

(d) One eigenvector V_1 for λ_1 is $V_1 = (1, -1)$, and one eigenvector V_2 for λ_2 is $V_2 = (4, 1)$. Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{4t} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $Y_1(t)$.

The x(t)- and y(t)-graphs for $Y_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 e^{4t} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

$$(2 - \lambda)(1 - \lambda) - 1 = \lambda^2 - 3\lambda + 1 = 0,$$

and therefore the eigenvalues are

$$\lambda_1 = \frac{3+\sqrt{5}}{2} \quad \text{and} \quad \lambda_2 = \frac{3-\sqrt{5}}{2}.$$

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = (3 + \sqrt{5})/2$, we solve the system of equations

$$\begin{cases} 2x_1 - y_1 = \frac{3 + \sqrt{5}}{2}x_1 \\ -x_1 + y_1 = \frac{3 + \sqrt{5}}{2}y_1 \end{cases}$$

and obtain

$$y_1 = \frac{1 - \sqrt{5}}{2} x_1,$$

which is equivalent to the equation $2y_1 = (1 - \sqrt{5})x_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $2y_2 = (1 + \sqrt{5})x_2$ for $\lambda_2 = (3 - \sqrt{5})/2$.

(d) One eigenvector V_1 for the eigenvalue λ_1 is $V_1=(2,1-\sqrt{5})$, and one eigenvector V_2 for the eigenvalue λ_2 is $V_2=(2,1+\sqrt{5})$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{(3+\sqrt{5})t/2} \begin{pmatrix} 2 \\ 1-\sqrt{5} \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{(3-\sqrt{5})t/2} \begin{pmatrix} 2 \\ 1+\sqrt{5} \end{pmatrix}$.

The x(t)- and y(t)-graphs for $Y_1(t)$.

The x(t)- and y(t)-graphs for $Y_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{(3+\sqrt{5})t/2} \begin{pmatrix} 2 \\ 1-\sqrt{5} \end{pmatrix} + k_2 e^{(3-\sqrt{5})t/2} \begin{pmatrix} 2 \\ 1+\sqrt{5} \end{pmatrix}.$$

$$(2 - \lambda)(1 - \lambda) - 1 = \lambda^2 - 3\lambda + 1 = 0$$
,

and therefore the eigenvalues are

$$\lambda_1 = \frac{3 + \sqrt{5}}{2}$$
 and $\lambda_2 = \frac{3 - \sqrt{5}}{2}$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = (3 + \sqrt{5})/2$, we solve the system of equations

$$\begin{cases} 2x_1 + y_1 = \frac{3 + \sqrt{5}}{2}x_1 \\ x_1 + y_1 = \frac{3 + \sqrt{5}}{2}y_1 \end{cases}$$

and obtain

$$y_1 = \frac{-1 + \sqrt{5}}{2} x_1,$$

which is equivalent to the equation $2y_1 = (-1 + \sqrt{5})x_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $2y_2 = (-1 - \sqrt{5})x_2$ for $\lambda_2 = (3 - \sqrt{5})/2$.

(d) One eigenvector V_1 for the eigenvalue λ_1 is $V_1=(2,-1+\sqrt{5})$, and one eigenvector V_2 for the eigenvalue λ_2 is $V_2=(-2,1+\sqrt{5})$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{(3+\sqrt{5})t/2} \begin{pmatrix} 2 \\ -1+\sqrt{5} \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{(3-\sqrt{5})t/2} \begin{pmatrix} -2 \\ 1+\sqrt{5} \end{pmatrix}$.

The x(t)- and y(t)-graphs for $Y_1(t)$.

The x(t)- and y(t)-graphs for $Y_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{(3+\sqrt{5})t/2} \begin{pmatrix} 2 \\ -1+\sqrt{5} \end{pmatrix} + k_2 e^{(3-\sqrt{5})t/2} \begin{pmatrix} -2 \\ 1+\sqrt{5} \end{pmatrix}.$$

$$(-1 - \lambda)(-4 - \lambda) + 2 = \lambda^2 + 5\lambda + 6 = (\lambda + 3)(\lambda + 2) = 0,$$

and therefore the eigenvalues are $\lambda_1=-2$ and $\lambda_2=-3$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -2$, we solve the system of equations

$$\begin{cases}
-x_1 - 2y_1 = -2x_1 \\
x_1 - 4y_1 = -2y_1
\end{cases}$$

and obtain $x_1 = 2y_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $x_2 = y_2$ for $\lambda_2 = -3$.

(d) One eigenvector V_1 for λ_1 is $V_1 = (2, 1)$, and one eigenvector V_2 for λ_2 is $V_2 = (1, 1)$. Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-2t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $Y_1(t)$.

The identical) x(t)- and y(t)-graphs for $Y_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{-2t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + k_2 e^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$