1. (a) The characteristic polynomial is

$$
(3-\lambda)(-2-\lambda)=0,
$$

and therefore the eigenvalues are $\lambda_{1}=-2$ and $\lambda_{2}=3$.
(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=-2$, we solve the system of equations

$$
\left\{\begin{aligned}
3 x_{1}+2 y_{1} & =-2 x_{1} \\
-2 y_{1} & =-2 y_{1}
\end{aligned}\right.
$$

and obtain $5 x_{1}=-2 y_{1}$.
Using the same procedure, we see that the eigenvectors $\left(x_{2}, y_{2}\right)$ for $\lambda_{2}=3$ must satisfy the equation $y_{2}=0$.
(c)

(d) One eigenvector \mathbf{V}_{1} for λ_{1} is $\mathbf{V}_{1}=(-2,5)$, and one eigenvector \mathbf{V}_{2} for λ_{2} is $\mathbf{V}_{2}=(1,0)$.

Given the eigenvalues and these eigenvectors, we have the two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{-2 t}\binom{-2}{5} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{3 t}\binom{1}{0}
$$

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{1}(t)$.
The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{-2 t}\binom{-2}{5}+k_{2} e^{3 t}\binom{1}{0} .
$$

2. (a) The characteristic polynomial is

$$
(-4-\lambda)(-3-\lambda)-2=\lambda^{2}+7 \lambda+10=0,
$$

and therefore the eigenvalues are $\lambda_{1}=-2$ and $\lambda_{2}=-5$.
(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=-2$, we solve the system of equations

$$
\left\{\begin{aligned}
-4 x_{1}-2 y_{1} & =-2 x_{1} \\
-x_{1}-3 y_{1} & =-2 y_{1}
\end{aligned}\right.
$$

and obtain $y_{1}=-x_{1}$.
Using the same procedure, we obtain the eigenvectors $\left(x_{2}, y_{2}\right)$ where $x_{2}=2 y_{2}$ for $\lambda_{2}=$ -5 .
(c)

(d) One eigenvector \mathbf{V}_{1} for λ_{1} is $\mathbf{V}_{1}=(1,-1)$, and one eigenvector \mathbf{V}_{2} for λ_{2} is $\mathbf{V}_{2}=(2,1)$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{-2 t}\binom{1}{-1} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{-5 t}\binom{2}{1}
$$

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{1}(t)$.
The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{-2 t}\binom{1}{-1}+k_{2} e^{-5 t}\binom{2}{1} .
$$

3. (a) The eigenvalues are the roots of the characteristic polynomial, so they are the solutions of

$$
(-5-\lambda)(-4-\lambda)-2=\lambda^{2}+9 \lambda+18=0 .
$$

Therefore, the eigenvalues are $\lambda_{1}=-3$ and $\lambda_{2}=-6$.
(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=-3$, we solve the system of equations

$$
\left\{\begin{aligned}
-5 x_{1}-2 y_{1} & =-3 x_{1} \\
-x_{1}-4 y_{1} & =-3 y_{1}
\end{aligned}\right.
$$

and obtain $y_{1}=-x_{1}$.
Using the same procedure, we obtain the eigenvalues $\left(x_{2}, y_{2}\right)$ where $x_{2}=2 y_{2}$ for $\lambda_{2}=-6$.
(c)

(d) One eigenvector \mathbf{V}_{1} for $\lambda_{1}=-3$ is $\mathbf{V}_{1}=(1,-1)$, and one eigenvector \mathbf{V}_{2} for $\lambda_{2}=-6$ is $\mathbf{V}_{2}=(2,1)$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{-3 t}\binom{1}{-1} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{-6 t}\binom{2}{1}
$$

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{1}(t)$.

the $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{-3 t}\binom{1}{-1}+k_{2} e^{-6 t}\binom{2}{1} .
$$

4. (a) The characteristic polynomial is

$$
(2-\lambda)(4-\lambda)+1=\lambda^{2}-6 \lambda+9=0,
$$

and therefore there is only one eigenvalue, $\lambda=3$.
(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda=3$, we solve the system of equations

$$
\left\{\begin{aligned}
2 x_{1}+y_{1} & =3 x_{1} \\
-x_{1}+4 y_{1} & =3 y_{1}
\end{aligned}\right.
$$

and obtain $y_{1}=x_{1}$.
(c)

(d) One eigenvector \mathbf{V} for λ is $\mathbf{V}=(1,1)$. Given this eigenvector, we have the solution

$$
\mathbf{Y}(t)=e^{3 t}\binom{1}{1}
$$

The $x(t)$ - and $y(t)$-graphs (which are identical) for $\mathbf{Y}(t)$
(e) Since the method of eigenvalues and eigenvectors does not give us a second solution that is linearly independent from $\mathbf{Y}(t)$, we cannot form the general solution.
5. (a) The characteristic polynomial is

$$
\left(-\frac{1}{2}-\lambda\right)^{2}=0,
$$

and therefore there is only one eigenvalue, $\lambda=-1 / 2$.
(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda=-1 / 2$, we solve the system of equations

$$
\left\{\begin{aligned}
-\frac{1}{2} x_{1} & =-\frac{1}{2} x_{1} \\
x_{1}-\frac{1}{2} y_{1} & =-\frac{1}{2} y_{1}
\end{aligned}\right.
$$

and obtain $x_{1}=0$.
(c)

(d) Given the eigenvalue $\lambda=-1 / 2$ and the eigenvector $\mathbf{V}=(0,1)$, we have the solution

$$
\mathbf{Y}(t)=e^{-t / 2}\binom{0}{1}
$$

The $x(t)$ - and $y(t)$-graphs for $Y(t)$.
(e) Since the method of eigenvalues and eigenvectors does not give us a second solution that is linearly independent from $\mathbf{Y}(t)$, we cannot form the general solution.
6. (a) The characteristic polynomial is

$$
(5-\lambda)(-\lambda)-36=0
$$

and therefore the eigenvalues are $\lambda_{1}=-4$ and $\lambda_{2}=9$.
(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=-4$, we solve the system of equations

$$
\left\{\begin{aligned}
5 x_{1}+4 y_{1} & =-4 x_{1} \\
9 x_{1} & =-4 y_{1}
\end{aligned}\right.
$$

and obtain $9 x_{1}=-4 y_{1}$.
Using the same procedure, we see that the eigenvectors $\left(x_{2}, y_{2}\right)$ for $\lambda_{2}=9$ must satisfy the equation $y_{2}=x_{2}$.
(c)

(d) One eigenvector \mathbf{V}_{1} for λ_{1} is $\mathbf{V}_{1}=(4,-9)$, and one eigenvector \mathbf{V}_{2} for λ_{2} is $\mathbf{V}_{2}=(1,1)$.

Given the eigenvalues and these eigenvectors, we have the two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{-4 t}\binom{4}{-9} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{9 t}\binom{1}{1}
$$

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{1}(t)$.
The (identical) $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{-4 t}\binom{4}{-9}+k_{2} e^{9 t}\binom{1}{1} .
$$

7. (a) The characteristic polynomial is

$$
(3-\lambda)(-\lambda)-4=\lambda^{2}-3 \lambda-4=(\lambda-4)(\lambda+1)=0,
$$

and therefore the eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=4$.
(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=-1$, we solve the system of equations

$$
\left\{\begin{aligned}
3 x_{1}+4 y_{1} & =-x_{1} \\
x_{1} & =-y_{1}
\end{aligned}\right.
$$

and obtain $y_{1}=-x_{1}$.
Using the same procedure, we obtain the eigenvectors $\left(x_{2}, y_{2}\right)$ where $x_{2}=4 y_{2}$ for $\lambda_{2}=4$.
(c)

(d) One eigenvector \mathbf{V}_{1} for λ_{1} is $\mathbf{V}_{1}=(1,-1)$, and one eigenvector \mathbf{V}_{2} for λ_{2} is $\mathbf{V}_{2}=(4,1)$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{-t}\binom{1}{-1} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{4 t}\binom{4}{1}
$$

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{1}(t)$.

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{-t}\binom{1}{-1}+k_{2} e^{4 t}\binom{4}{1}
$$

8. (a) The characteristic polynomial is

$$
(2-\lambda)(1-\lambda)-1=\lambda^{2}-3 \lambda+1=0,
$$

and therefore the eigenvalues are

$$
\lambda_{1}=\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \lambda_{2}=\frac{3-\sqrt{5}}{2} .
$$

(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=(3+\sqrt{5}) / 2$, we solve the system of equations

$$
\left\{\begin{aligned}
2 x_{1}-y_{1} & =\frac{3+\sqrt{5}}{2} x_{1} \\
-x_{1}+y_{1} & =\frac{3+\sqrt{5}}{2} y_{1}
\end{aligned}\right.
$$

and obtain

$$
y_{1}=\frac{1-\sqrt{5}}{2} x_{1},
$$

which is equivalent to the equation $2 y_{1}=(1-\sqrt{5}) x_{1}$.
Using the same procedure, we obtain the eigenvectors $\left(x_{2}, y_{2}\right)$ where $2 y_{2}=(1+\sqrt{5}) x_{2}$ for $\lambda_{2}=(3-\sqrt{5}) / 2$.
(c)

(d) One eigenvector \mathbf{V}_{1} for the eigenvalue λ_{1} is $\mathbf{V}_{1}=(2,1-\sqrt{5})$, and one eigenvector \mathbf{V}_{2} for the eigenvalue λ_{2} is $\mathbf{V}_{2}=(2,1+\sqrt{5})$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{(3+\sqrt{5}) t / 2}\binom{2}{1-\sqrt{5}} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{(3-\sqrt{5}) t / 2}\binom{2}{1+\sqrt{5}}
$$

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{1}(t)$.

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{(3+\sqrt{5}) t / 2}\binom{2}{1-\sqrt{5}}+k_{2} e^{(3-\sqrt{5}) t / 2}\binom{2}{1+\sqrt{5}}
$$

9. (a) The characteristic polynomial is

$$
(2-\lambda)(1-\lambda)-1=\lambda^{2}-3 \lambda+1=0,
$$

and therefore the eigenvalues are

$$
\lambda_{1}=\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \lambda_{2}=\frac{3-\sqrt{5}}{2} .
$$

(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=(3+\sqrt{5}) / 2$, we solve the system of equations

$$
\left\{\begin{aligned}
2 x_{1}+y_{1} & =\frac{3+\sqrt{5}}{2} x_{1} \\
x_{1}+y_{1} & =\frac{3+\sqrt{5}}{2} y_{1}
\end{aligned}\right.
$$

and obtain

$$
y_{1}=\frac{-1+\sqrt{5}}{2} x_{1},
$$

which is equivalent to the equation $2 y_{1}=(-1+\sqrt{5}) x_{1}$.
Using the same procedure, we obtain the eigenvectors $\left(x_{2}, y_{2}\right)$ where $2 y_{2}=(-1-\sqrt{5}) x_{2}$ for $\lambda_{2}=(3-\sqrt{5}) / 2$.
(c)

(d) One eigenvector \mathbf{V}_{1} for the eigenvalue λ_{1} is $\mathbf{V}_{1}=(2,-1+\sqrt{5})$, and one eigenvector \mathbf{V}_{2} for the eigenvalue λ_{2} is $\mathbf{V}_{2}=(-2,1+\sqrt{5})$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{(3+\sqrt{5}) t / 2}\binom{2}{-1+\sqrt{5}} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{(3-\sqrt{5}) t / 2}\binom{-2}{1+\sqrt{5}} .
$$

The $x(t)$ - and $y(t)$-graphs for $\mathrm{Y}_{1}(t)$.

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{(3+\sqrt{5}) t / 2}\binom{2}{-1+\sqrt{5}}+k_{2} e^{(3-\sqrt{5}) t / 2}\binom{-2}{1+\sqrt{5}}
$$

10. (a) The characteristic polynomial is

$$
(-1-\lambda)(-4-\lambda)+2=\lambda^{2}+5 \lambda+6=(\lambda+3)(\lambda+2)=0,
$$

and therefore the eigenvalues are $\lambda_{1}=-2$ and $\lambda_{2}=-3$.
(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=-2$, we solve the system of equations

$$
\left\{\begin{aligned}
-x_{1}-2 y_{1} & =-2 x_{1} \\
x_{1}-4 y_{1} & =-2 y_{1}
\end{aligned}\right.
$$

and obtain $x_{1}=2 y_{1}$.
Using the same procedure, we obtain the eigenvectors $\left(x_{2}, y_{2}\right)$ where $x_{2}=y_{2}$ for $\lambda_{2}=-3$.
(c)

(d) One eigenvector \mathbf{V}_{1} for λ_{1} is $\mathbf{V}_{1}=(2,1)$, and one eigenvector \mathbf{V}_{2} for λ_{2} is $\mathbf{V}_{2}=(1,1)$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{-2 t}\binom{2}{1} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{-3 t}\binom{1}{1} .
$$

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{1}(t)$.
The identical) $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{-2 t}\binom{2}{1}+k_{2} e^{-3 t}\binom{1}{1}
$$

