Section 3.4

1. Using Euler’s formula, we can write the complex-valued solution Y.(#) as

Y. () = e(l—!—S:’}I ( 2+i )
1

_ it [ 2
1

241
:et{c0531+isin3r)( lr )

¢ [ 2cos3t —sin 3¢ .+ [ 2sin3r+ cos3r
=e + 1€ . .
cos 3t sin 3t
Hence, we have

Ym(r):er( 2 cos 3t — sin 3¢ ) nd Yim(f]=€r( cos 3fr 4+ 2 sin 3t )

cos 3¢ sin 3¢t

The general solution is

Y(1) = ke ( 2 cos 3r — sin 3¢ ) + ket ( cos 3t 4+ 2 sin 3¢ ) _

cos 3¢ sin 3t
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Section 3.4

2. The complex solution is

. 1
Y.(1) = 24501 ,
e(t) 43

so we can use Fuler’s formula to write

. 1
Y. (1) = o(—2+501
e(?) 43

_ o2 it -
4 —3i

1

. ..

= 5t + St

e " (cos i sin }(4_3{_)

cos 57 sin 5¢
— 2 ¢ . Yo o ) _
4 cos St + 3sin 5t 4sin 5t — 3cos 5t
Hence, we have

S5r sin 5¢
Yo(f)=e X cos and Yiu(1) =e¢ & .
re(f) (40055r+3si115.f im(f) 4 sin 5¢ — 3 cos 5¢

The general solution is

5 in 5
Y = kle_zf cos 51 | N kge_zt | -sm s ) .
4 cos 5r + 3sin 5¢ 4 sin 5t — 3 cos 5t
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Section 3.4

3. (a) The characteristic equation is
(=22 1d4=73214=0,

and the eigenvalues are A = +2i.
(b) Since the real part of the eigenvalues are 0, the origin is a center.
(e) Since A = +2i, the natural period is 27 /2 = m, and the natural frequency is 1/7.
(d) At (1, 0), the tangent vector is (—2, 0). Therefore, the direction of oscillation is clockwise.

(e) According to the phase plane, x(#) and v(r) are periodic with period 7. At the initial condition
(1, 0), both x(r) and y(¢) are initially decreasing.

AN\
) N/ Y Q)
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Section 3.4

4. (a) The characteristic equation is
(2—A)(6—2)+8=21%—8x+20,

and the eigenvalues are A =4 £ 27.

(b) Since the real part of the eigenvalues is positive, the origin is a spiral source.

(e) Since A = 4 + 2i, the natural period is 271 /2 = 7, and the natural frequency is 1/7.

(d) At the point (1, 0), the tangent vector is (2, —4). Therefore, the solution curves spiral around
the origin in a clockwise fashion.

(e) Since dY/dt = (4,2) at Yo = (1, 1), both x(#) and y(¢) increase imtially. The distance be-
tween successive zeros is , and the amplitudes of both x(7) and y(7) are increasing.

10+
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Section 3.4

5. (a) The characteristic polynomial is

(—3 -1 -2 +15=22 121+ 12,

so the eigenvalues are A = —1 £ i+/11.

(b) The eigenvalues are complex and the real part is negative, so the origin is a spiral sink.
(e) The natural period 1s 2t /+/11. The natural frequency is v/11 /(27).
(d) At the point (1, 0), the vector field is (—3, 3). Hence, the solution curves must spiral in a coun-

terclockwise fashion.
(e) ¥y
X,y
-4
y(t)
t
27 /4/11
x(t)
_4——

6. (a) The characteristic polynomial is

(—)(=1 =) +4=22+1+4,

so the eigenvalues are A = (—1 + im)}Z.

(b) The eigenvalues are complex and the real part is negative, so the origin is a spiral sink.

(¢) The natural period is 27 /(v/15/2) = 47 /+/15. The natural frequency is +/15/(47).

(d) The vector field at (1, 0) 1s (0, —2). Hence, solution curves spiral about the origin in a clock-
wise fashion.

(e) From the phase plane, we see that both x(¢) and y(r) are initially increasing. However, v(r)
quickly reaches a local maximum. Although both functions oscillate, each successive oscilla-
tion has a smaller amplitude.

17715 8w /15

y(t)
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Section 3.4

7.

(a) The characteristic equation is

Q-1 -+12=2" 431+ 14=0,
and the eigenvalues are A = (3 & /471)/2.
(b) Since the real part of the eigenvalues is positive, the origin is a spiral source.

(¢) Since A = (3 + +/47i)/2. natural period is 47 /+/47, and natural frequency is ~/47 / (477).

(d) At the point (1, 0), the tangent vector is (2, 2). Therefore, the solution curves spiral about the
origin in a counterclockwise fashion.

(e) From the phase plane, we see that both x(r) and v(r) oscillate and that the amplitude of these
oscillations increases rapidly.

10T y(®)
x - /

T\/ i T

—104

(a) The characteristic polynomial is

(1=MD2 =2 +12=2%2-31+ 14,

so the eigenvalues are A = (3 £ i+/47)/2.
(b) The eigenvalues are complex and the real part is positive, so the origin 1s a spiral source.
(¢) The natural period is 27 /(+/47/2) = 47 /+/47. The natural frequency is /47 /(47).

(d) The vector field at (1,0) is (1, —3). Hence, the solution curves spiral about the origin in a
clockwise fashion.

(e) From the phase plane, we see that both x(r) and v(7) oscillate about 0 and that the amplitude of
these oscillations grows quickly.

¥

y(t)
16+ AN

S i
/

x(t)

(RN

e
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Section 3.4

9. (a) According to Exercise 3, A = £2i. The eigenvectors (x, v) associated to eigenvalue A = 2i
must satisfy the equation 2y = 2ix, which is equivalent to y = ix. One such eigenvector is
(1, i), and thus we have the complex solution

Y() = 2t 1 _ C(.)S 2t 4 sin 2¢ -
i —sin 2¢ cos 2r

Taking real and imaginary parts, we obtain the general solution

2 in 27
YO =k | 7 Vil 7).
—sin 2¢ cos 2r

(b) From the initial condition, we obtain

o(2)(2)-(2)

and therefore, Xy = 1 and k» = 0. Consequently.the solution with the initial condition (1, 0) 1s

cos 2f
Y = )
© ( —sin2r )

(e) X,y
x(t)  y(t)

NOYR,
ANVANVA
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Section 3.4

10. (a) According to Exercise 4, the eigenvalues are A = 4 4 2i. The eigenvectors (x, y) associated
to the eigenvalue 4 + 27 must satisfy the equation v = (1 + i)x. Hence, using the eigenvector
(1,1 +17), we obtain the complex-valued solution

: 1 cos 2t sin 27
Y(IJ — e(4—|—2l}f . — e‘” . + !,'641 . )
141 cos 2t —sin2¢ cos 2t + sin 2¢

From the real and imaginary parts of Y(7), we obtain the general solution

Y() = klf"" cos 2.?. +R’2e4r sin 2.?. _
cos 2t — sin 2t cos 2f 4 sin 27

(b) Using the initial condition, we have

(1))

and thus k; = 1 and k> = 0. The desired solution is

7
Y() = S cos 2t
cos 2t — sin 2t

© xy
10T
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Section 3.4

11. (a) To find the general solution, we find the eigenvectors from the characteristic polynomial
(=3 -1 —)+15=2212x412.

The eigenvalues are A = —1 +i+/11. To find an eigenvector associated to the eigenvector
—1+i4/11, we must solve the equations

—3x —5y= (—1 +f«/ﬁ).¥
Ix+y= (—l—l—r'«/ﬁ) .

We see that the eigenvectors must satisfy the equation 3x = (-2 +i+/11)y. Using the eigen-
vector (—2 +i+/11, 3). we obtain the complex-valued solution

Yo = Ei-u-;‘,fﬁ)f ( —2 411 )
. 3 .

Using Euler’s formula, we write Y(7) as
—24i4/11
Y(0) = e (cos VTT1 +  sin VITY) ( < )

which can be expressed as

4 —2cosv/11t — /11 sin+/11¢ .+ ¥1lcos/11r —2sin+/11¢
Y(r)=e _ +ie ] .
3cosA/111¢ 3sina/111¢

Taking real and imaginary parts, we can form the general solution

Eot —2cosA/11r —+/11 sin+/111¢ 4 ket V11 cos+/11t —2sin+/11¢
e e i
' 3cos /117 2 3sin/11 7
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Section 3.4

(b) To find the particular solution with initial condition (4, 0), we solve for &1 and &> and obtain

—2k1 4+ +/11k2 =4
3k =0.

We have &y =0and k» = 4/+/11.
The desired solution is

W, _ 8
Y(I):e_t(élcos 11+ msm 11.?).

%Sinmf
(e) x, ¥
EE
\ y(t)
\ i —
f ] e — r
\_/ 2 /11
x(t)
_4--
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Section 3.4

12. (a) The eigenvalues are the roots of the characteristic polynomial
(=)(=1=2) +4=22+r+4

So A = (=1 & iy/15)/2. The eigenvectors (x,y) associated to the eigenvalue A =
(—1 + i+/15)/2 must satisfy the equation 4y = (—1 + i+/15)x. Hence, (4, —1 + i/15)

is an eigenvector for this eigenvalue, and we have the complex-valued solution

Y(1) = - 1HVDE2 ( 4 )

14iVT3
e (cos (21 +isin (L)) ( A )
. 4cos (4 1)
—cos (1) — VTsin (1)
ie ™/ . (ag I)

—siu(-"?t)+~/ﬁcos( 215 c‘)

By taking real and imaginary parts

Yoty = e tP? 4cos (g I)
N —cos (@ r) — /155sin (@r)
and
e 4sin (B 1) |

—sin (¥ 1) + VTS cos (1)

we form the general solution &y Yee(7) + 52 Yim (7).
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Section 3.4

(b) To find the particular solution with the initial condition (—1, 1) we set + = 0 in the general
solution and solve for &; and &». We get

A =—1
—ky 4+ A 15kr =1,

which yields k; = —1/4 and k» = 3/(+/154) = +/15/20. The desired solution is

— cos (@ I) t J'Esin(ﬂlg .r)

5
Y(t) = e /2
cos (3@ .,r) + J@ sin (Jg I)
(e) X,y
[ x(t)

Y AV

47715 sn/J_

y(f)
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Section 3.4

13. (a) According to Exercise 7, the eigenvalues are A = (3 £ i4/47)/2. The eigenvalues (x, y) asso-
ciated to the eigenvector (3 + i+/47)/2 must satisfy the equation 12y = (1 — i/47)x. Hence,

one eigenvector is (12, 1 — i4/47), and we have the complex-valued solution

Y(r) = £GHY3/2 ( 12 )

1—i/47
3 12 cos (@ I)
—° cos( )+«/_sm(%r) N
o 12sin (¥ 1)

\/’-ﬁcos(‘f— )+s (@I)
Taking real and imaginary parts

12 cos (@ r)

_ o
TOZTN can (1) 4 vTsin (42

12sin (¥ 1)
fcos( )—|—5u1(-“";i_7.f) ,

we obtain the general solution & Y (7) + A2 Yim (7).
{(b) From the initial condition, we have

o) )=(0)

Thus,k; = 1/6and kr = —S/‘(-ﬁm), and the desired solution 1is

2cos (Er) - :];O—Sin(ﬂr)

Yoo (1) = 372

_ 32 2 41 2
Y6 = cos (@1) 4—\}%5&11(% r)
(e) X,y
10T ¥(1)
4 .y
T\// A7t /N/AT
—10—+ (1)
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Section 3.4

14. (a) The characteristic polynomial is
(1—M2 -2 +12=2> 31114,
so the eigenvalues are A = 3/2 + i+/47/2. The eigenvectors (x, y) associated to the eigen-
value (3 + i+/47)/2 must satisfy the equation 8y = (1 + i+/47)x. Hence, (8, 1 + i+/47) is an

eigenvector, and we obtain the complex-valued solution

: 8
Y1) = oBH VD2
n=e L4y

— o oo (1) i () ()

_ 8cos (3"{25Jr .r) .
cos (-“? r) — /4T sin (Jgi_? .r)
- 8 sin (:@ r)
sin (a.f;E' e‘) + /47 cos (j;ﬁ' e‘)
Taking real and imaginary parts

8cos (@ r)

Yre(fj — 6?3!!2

cos (@ I) - «/ﬁsm(@ .f)
and
8 sin (@ r)

iy — 32
V(1) = ¢ sin (@ r) + /47 cos (@ ’)

we obtain the general solution &1 Y () + 2 Yim (7).
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Section 3.4

(b) To find the particular solution, we solve
8k =1
k1 4+ 4Tk =—

and obtain &1 = 1/8 and &1 = —9/(8+/47). The desired solution is
cos (-‘/i_? r) — 2 sin (a.f'iﬁ' e‘)

Y(r) = /2 2 Va7
47 T i (AT
—cos (-‘/2: r) — 5 sin (3”2: e‘)
(© =3 40

16 N\ /
o \\/ e AT

_r(f)

l\.

—164

15. (a) In the case of complex eigenvalues, the function x(7) oscillates about x = 0 with constant
period, and the amplitude of successive oscillations is either increasing, decreasing, or constant
depending on the sign of the real part of the eigenvalue. The graphs that satisfy these properties
are (1v) and (v).

(b) For (iv), the natural period is approximately 1.5, and since the amplitude tends toward zero as
t increases, the origin is a sink. For (v), the natural period is approximately 1.25, and since the
amplitude increases as 7 increases, the origin is a source.

(e) (1) The time between successive zeros is not constant.

(11) Oscillation stops at some 7.
(1i1) The amplitude is not monotonically decreasing or increasing.
(vi) Oscillation starts at some 7. There was no prior oscillation.

16. The characteristic polynomial is
(@a—A)(a—2r)+b>=2%—2ar + (a®> + %),

so the eigenvalues are

=a++—-b2

A=

2a £ \4a? — 4> + %) - v —4p?
2 B 2

Since b* > 0, the eigenvalues are complex. In fact, they are a =+ bi.
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17.

18.

19.

We know that A; = o + i satisfies the equation Jk% +akj+b = 0. Therefore, if we take the complex
conjugate all of the terms in this equation, we obtain

(@ —iB)> +ale —ip)+b=0,
since a and b are real. The complex conjugate of A; 1s A» = @ — i, and we have

A 4ak+b=0.

A:(j j).

If (xp, yo) 1s an eigenvector associated to the eigenvalue @ + i, we have

a b xo \ [ (@+if)xo
c d)\»/) \(@+ipyw |

Then axg + bvg = (a + if)xp, which is equivalent to

Therefore, A» is also a root.

Let

a—a+ip
Vg = ——————Xp-
JO A 0
Suppose xg is real and nonzero, then the imaginary part of yg i1s Bxg/b. Since B # 0, the imaginary
part of yp must be nonzero. (Note: If b = 0, then the eigenvalues are a and d. In other words, they
are not complex, so the hypothesis of the exercise is not satisfied).

Suppose Yo = kY for some constant £. Then, Yo = (1 +ik)Y;. Since AYy = AY(. we have
(1 +ik)AY1 = A(1 +iH)Y;.

Thus, AY; = AY;. Now note that the left-hand side, AY, is a real vector. However, since A is
complex and Y; is real, the right-hand side is complex (that is, it has a nonzero imaginary part).
Thus, we have a contradiction, and Y; and Y» must be linearly independent.

. If AYy = AY(, then we can take complex conjugates of both sides to obtain AYy = AYo (where the

complex conjugate of a vector or matrix is the complex conjugate of its entries). But AYp = AYo =
AY because A is real._A]so, AYp = A Yp. Hence, AYy = AYp. In other words, A is an eigenvalue
of A with eigenvector Y.

Page 16




Section 3.4

21. (a) The factor e~ is positive for all 7. Hence, the zeros of x(r) are exactly the zeros of sin fz.
Suppose t; and t» are successive zeros (that 1s, 17 < 2, x(f1) = x(rz) = 0, and x(¢) # O for
fy <t < tp),then Btr — B = w. In other words, r» — t; = 7 /8.
(b) By the nature of sine function, local maxima and local minima appear alternately. Therefore,
we look for 1 and 7> such that x'(r;) = x'(r2) =0 and x'(r) # O for#; <t < t». From

x'(1) = e *(—asinfr + fcos Bt) =0,

we know that tan St = B/« if r is corresponds to a local extremum. Since the tangent function
is periodic with period m, 8(t» —t1) = 7. Hence, h —t; = m/B. Note that the distance between
a local minimum and the following local maximum of x () 1s constant over .

(¢) From part (b), we know that the distance between the first local maximum and the first local
minimum is 7 /B and the distance between the first local minimum and the second local maxi-
mum is 7 /. Therefore, the distance between the first two local maxima of x(¢) is 2 /8.

(d) From part (b), we know that the first local maximum of x(7) occurs at r = (arctan(8/))/B.

22. Consider the point in the plane determined by the coordinates (k, £2), and let ¢ be an angle such
that K cos¢ = k; and K sin¢ = k7. (Such an angle exists since (K cos ¢, K sin ¢) parameterizes
the circle through (%, £7) centered at the origin. In fact, there are infinitely many such ¢, all differing
by integer multiples of 27 .) Then

x(t) = ky cos Bt + ko sin Bt
= K cos¢pcos St + K sin¢ sin St
= K cos(Bt — ¢).

The last equality comes from the trigonometric identity for the cosine of the difference of two an-
gles.
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23. (a) The corresponding first-order system is

dy
E =v
dv
—- =—qy — pv.
(b) The characteristic polynomuial is

(—A)(=p =V +q =2+ ph+q,

so the eigenvalues are A = (—p % /p? — 4¢g )/2. Hence, the eigenvalues are complex if and
only if p> < 4q. Note that ¢ must be positive for this condition to be satisfied.

(¢) In order to have a spiral sink, we must have p? < 4qg (to make the eigenvalues complex) and
p > 0 (to make the real part of the eigenvalues negative). In other words, the origin is a spiral
sink if and only if ¢ > O and 0 < p < 2,/g. The origin is a center if and only if ¢ > 0 and
p = 0. Finally, the origin is a spiral source if and only if ¢ > O and —-2,/7 < p < 0.

(d) The vector field at (1,0) 1s (0, —g). Hence, if ¢ > 0, then the vector field points down along
the entire y-axis, and the solution curves spiral about the origin in a clockwise fashion. Note
that ¢ must be positive for the eigenvalues to be complex, so the solution curves always spiral
about the origin in a clockwise fashion as long as the eigenvalues are complex.

24. Note that the graphs have the same period and exponential rate of growth.

X,y X,y
x(t)
20+ | zoi y(®)
10+ 10 |
L«c;@ t e~ -@ t
BT A {)T 1 0 10 57710 V15
t

207 (1) -0 x(t)

25. There 1s no spiral saddle because a linear saddle 1s a linear system where some solutions approach
the origin and some move away. If one solution spirals toward (or away from) the origin, then we
can multiply that solution by any constant, scaling it so that it goes through any point in the plane.
This scaled solution is still a solution of the system (recall the Linearity Principle), so every solution
spirals in the same way, either toward or away from the origin.
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26. The eigenvalues are 4. Using the usual method to find eigenvectors, we see that the eigenvectors
corresponding to the eigenvalue i satisfy the equation 10y = (3 + i)x. We use the eigenvector
Vo = (10, 3 + i) to determine the general solution. It is

10 10 si
Y(1) =y )ik o).
3cost —sint cost 4+ 3sint

In terms of components, we have

x(t) = 10k; cost + 10ks sin ¢
v(t) = (3ky + ko) cost + (3kr — ky) sint.

To show that the solution curves are ellipses, we need to find an “elliptical” relationship that x(7)
and y(r) satisfy. In this case, it turns out that

[x(1)1* — 6x(7) y(r) + 10[y(1)]* = 10(k] +K3).

In particular, the value of x> — 6xy + 10y? does not depend on 7. It only depends on &y and k>, which
are, in turn, determined by the initial condition. It is an exercise in analytic geometry to show that
the curves that satisfy

X% — 6xy + l[}_\,-'2 =K

are ellipses for any positive constant K .

You may wonder where x — 6xy + 10y? comes from. See the technique for constructing Hamil-
tonian functions described m Section 5.3.
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