Section 3.5

1. (a) The characteristic equation 1s
(=3-21)7=0,

and the eigenvalue is A = —3.
(b) To find an eigenvector, we solve the simultaneous equations
—3x=-3x
x —3y=-3y.

Then, x = 0, and one eigenvector is (0, 1).
(e) Note the straight-line solutions along the y-axis.

_3T

(d) Since the eigenvalue is negative, any solution with an initial condition on the y-axis tends to-
ward the origin as f increases. According to the direction field, every solution tends to the
origin as ¢ increases. The solutions with initial conditions in the half-plane x > 0 eventually
approach the origin along the positive y-axis. Similarly, the solutions with initial conditions in
the half-plane x < 0 eventually approach the origin along the negative y-axis.
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Section 3.5

(e) At the point Yo = (1,0), dY/dr = (=3, 1). Therefore, x(¢) decreases initially and v(r) in-
creases initially. The solution eventually approaches the origin tangent to the positive y-axis.
Therefore, x(7) monotonically decreases to zero and y(r) eventually decreases toward zero.
Since the solution with the initial condition Y never crosses y-axis in the phase plane, the
function x(t) > 0 for all 7.

x(t)

y(z)
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2. (a) The characteristic polynomial is

Q-MNE - +1=22—-611+9=(—3)3%

so there 1s only one eigenvalue, A = 3.
(b) To find an eigenvector, we solve the equations

2x4+y=3x

—x + 4y =3y.

Both equations simplify to vy = x, so (1, 1) is one eigenvector.

(¢) Note the straight-line solutions along the line y = x.

y
34

(d) Since the sole eigenvalue is positive, all solutions except the equilibrium solution are unbounded
as r increases. Ast — —o0, the solutions with initial conditions in the half-plane v > x tend to
the origin tangent to the half-line vy = x with y < 0. Similarly, solutions with initial conditions
in the half-plane y < x tend to the origin tangent to the half-line v = x with ¥ > 0. Note the
solution curve that goes through the initial condition (1, 0).
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(e) At the point Yo = (1,0), dY/dr = (2, —1). Hence, x(t) is initially increasing, and v(7) is
initially decreasing.

x,y
3 (1)
i t
1 1’\
_5
y(t)
~10
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3. (a) The characteristic equation is
(=2—M(—4-)+1=(A+3)*=0,
and the eigenvalue is A = —3.
(b) To find an eigenvector, we solve the simultaneous equations
—2x —v=-3x
x —4y=—-3y.

Then, v = x, and one eigenvector is (1, 1).
() Note the straight-line solutions along the line y = x.
¥

(d) Since the eigenvalue is negative, any solution on the line y = x tends toward the origin along
v = x as t increases. According to the direction field, every solution tends to the origin as
t increases. The solutions with initial conditions that lie in the half-plane v = x eventually
approach the origin tangent to the half-line y = x with y < 0. Similarly, the solutions with
initial conditions that lie in the half-plane v < x eventually approach the origin tangent to the
line y = x with y = 0.
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(e) At the point Yo = (1,0), dY/dt = (-2, 1). Therefore, x(7) initially decreases and v(r) ini-
tially increases. The solution eventually approaches the origin tangent to the line y = x. Since
the solution curve never crosses the line y = x, the graphs of x(7) and v(z) do not cross.

X,y

4. (a) The characteristic polynomial is
(—)(—2 - +1=224+2+1=0G0+1>

so there 1s only one eigenvalue, A = —1.
(b) To find an eigenvalue we solve

y=—x
—x —2y=—y
These equations both simplify to y = —x, so (1, —1) is one eigenvector.

(e) Note the straight-line solutions along the line y = —x.

—l-———-——-~+———————1— x
-5 3

_31
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(d) Since the eigenvalue is negative, all solutions approach the origin as 7 increases. Solutions with
initial conditions on the line y = —x approach the origin along v = —x. Solutions with initial
conditions that lie in the half-plane y > —x approach the origin tangent to the half-line y = —x
with y < 0. Solutions with initial conditions that lie in the half-plane v < —x approach the
origin tangent to the half-line y = —x with y > 0.

X

(e) At the point Yo = (1,0), dY/dt = (0, —1). Therefore, x(¢) assumes a maximum at r = 0 and
then decreases toward 0. Also, y(7) becomes negative. Then, it assumes a (negative) minimum,
and finally it 1s asymptotic to 0 without crossing y = 0.

X,y
[
e ¢
! y(t) 3
_] =
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5. (a) According to Exercise 1, there is one eigenvalue, —3, with eigenvectors of the form (0, vg),

where vo # 0.
To find the general solution, we start with an arbitrary initial condition Vo = (xg, vg). Then

(7))
(7o) ()
:(;)_

‘We obtain the general solution

Y 0
Y(r)=e ! ( o ) 4 te ! ( ) .
Yo X0

(b) The solution that satisfies the initial condition (xg, o) = (1, 0) 1s

Y(rJ:e‘St([l) )—I—re_h( [1})

Hence, x(1) = e and y(¢) = te .

(¢) Compare the graphs of x (1) = e and v(t) = te—>' with the sketches obtained in part (e) of
Exercise 1.

x, ¥

)

x(t)

y(1)

|l
I3 =
-
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6. (a) From Exercise 2, we know that there is only one eigenvalue, A = 3, and the eigenvectors
(x0, vo) satisfy the equation yg = xp.
To find the general solution, we start with an arbitrary initial condition Vo = (xp, vo). Then

"1{( : (o))
( )

_f Yo—Xo
Yo —Xo
‘We obtain the general solution

X Vg — X
Y1) = e 0 +ret | 0 0 .
Yo Yo — Ao

(b) The solution that satisfies the initial condition (xg, vo) = (1, 0) is

1 1
Y(@) = ( 0 )+Ie3f( B )

Hence, x() = ¢>'(1 — t) and v(r) = et
(¢) Compare the graphs of x (1) = e (1—1) and v(t) = —re3 with the sketches obtained in part (e)
of Exercise 2.

x, ¥
x(1)
[ |3
1 i\
-5
y(t)
—10
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7. (a) From Exercise 3. we know that there is only one eigenvalue, A = —3, and the eigenvectors
(x0, vo) satisfy the equation yg = xp.
To find the general solution, we start with an arbitrary initial condition Vo = (xp, vo). Then

el ) (o 1))
(1 2)(2)

We obtain the general solution

X Xp—
Yoy =e | 70 ) e 00 ).
Yo Xo — Yo

(b) The solution that satisfies the initial condition (xg, o) = (1, 0) 15

Y(I):e_y(é)—l—re_m( i )

Hence, x(t) = e (t 4+ 1) and v(r) = re .

(¢) Compare the graphs of x(r) = et + 1) and v(t) = te—3 with the sketches obtained in
part (e) of Exercise 3.

x(r)

AL
/14

13 ==
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8. (a) From Exercise 4, we know that there is only one eigenvalue, A = —1, and the eigenvectors
(x0, vo) satisfy the equation yg = —xp.
To find the general solution, we start with an arbitrary initial condition Vo = (xp, vo). Then

we[( ) (et

‘We obtain the general solution

m:e—r(l'ﬂ)+,e—f( +)
Yo —Xo — Mo
(b) The solution that satisfies the initial condition (xg, o) = (1, 0) 15

Y(:):e—f(é)ﬂe—‘(_i )

Hence, x(1) = e *(r+ 1) and y(7) = —re".
(e) Compare the graphs of x(r) = ¢ '(r 4+ 1) and v(¢) = —te ' with those obtained in part (e) of

Exercise 4.
X, ¥
f
1 5
¥(t)
_]_ E S

9. (a) By solving the quadratic equation, we obtain

P + /a2 — 48 _
2
Therefore, for the quadratic to have a double root, we must have
o’ — 46 =0.

(b) If zero is a root, we set A = 0 in A> + aA + B = 0, and we obtain g = 0.
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10. (a) To compute the limit of te* as t — 00 if A > 0, we note that both # and ¢*' go to infinity as ¢
goes to infinity. So re™ blows up as 7 tends to infinity, and the limit does not exist.

(b) To compute the limit of ze* as r — oo if A < 0, we write

. . t .
lim 7e™ = lim = lim
t—00 t—o00 g—M t—oo e Al

where the last equality follows from L Hépital's Rule. Because e tends to infinity as r — oo
(—A = 0), the fraction tends to 0.

11. The characteristic equation is
—AM=p—AN+qg=+>+pr+q=0.

Solving the quadratic equation, one obtains

L —PEVP 4
5 .

(a) Therefore, in order for A to have two real eigenvalues, p and ¢ must satisfy p? — 4g > 0.
(b) In order for A to have complex eigenvalues, p and g must satisfy p> — 4g < 0.
() In order for A to have only one eigenvalue, p and g must satisfy p> — 4g = 0.

12. The characteristic polynomial of A is
det(A — AI) = A% — (a + d)A + (ad — bc) = A% — tr(A)A + det(A)

(see Section 3.2). A quadratic polynomial has only one root if and only if its discriminant is 0. In
this case, the discriminant of det(A — AI) is tr(A)? — 4 det(A).

13. Since every vector is an eigenvector with eigenvalue A, we substitute Y = (1, 0) into the equation

T )0

Hence,a = X and ¢ = 0. Similarly, letting Y = (0, 1), we have

(2)-(1)

Therefore. b =0and d = A.
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14. First note that, because Y; and Y, are independent, any vector Y3 can be written as a linear combi-
nation of Y; and Y». In other words, there exists A7 and %> such that

Ys =k Y1 +5Yo.
But then

AY; = A(h1Y1 +kY0)
= k1AY1 + k2AY»
=krAY1 + LAY,
= Ark1Y1 +4i2Y2)
= AY;.

That 1s, any Y3 1s an eigenvector with eigenvalue A.
Now use the result of Exercise 13 to conclude thata =d =X and b =c = 0.

15. Since Y1 (0) = Vp and Y2(0) = Wy, we see that Vi = Wy
Evaluating at r = 1 yields

Yi() =e*(Vo+Vy) and Ya(l) = e(Wy + W)).
Since Y1(1) = Y2(1) and Vg = Wy, we see that V; = W;.
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16. (a) Suppose that

A= ( @b ) :
c d
By assumption, we know that the characteristic polynomial of A has A¢ as a root of multiplicity

two. That 1s,

22— (a+d)A+ (ad —bc) = (A — Ag)?
= 2% — (2A)h + A3

Therefore,a +d = 2Ap, and ad — bc = JL%.
Now we compute (A — AgI)? using the definition of matrix multiplication. We have

— A b — A b
(A—aD2=| 77" a7
c d—lo c J_J'-O

[ (@a—2r0)* +bec bla+d—2h)
N cla+d—20) bet(d—2)% |

Since a + d = 2Ag, we see that the bottom-left and top-right entries are zero.
Now consider the top-left entry (a — 20)2 + be. We have

(a —lg)2+bc=a2—2alg—|—lg—l—bc
= a> — 2airy 4+ ad — be + be,

because ad — be = lg. The right-hand side simplifies to
a’ — 2aio+ad =ala —2A0+d)=0

because a + d = 2Ayp.
A similar argument is used to show that the bottom-right entry is zero.

(b) If Vj 1s an eigenvector, then V; = (A — AgI)Vp 1s the zero vector. If not, we use the result of
part (a) to compute

(A — 2oDV; = (A — 20I)>V = 0 (the zero vector).

Consequently, V; is an eigenvector.
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17. (a) The characteristic polynomial is
(—)(=1 =2 4+0=2% 42,

so the eigenvaluesare A = Oand A = —1.

(b) To find the eigenvectors V; associated to the eigenvalue L = 0, we must solve AV; =0V, =0
where A is the matrix that defines this linear system. (Note that this is the same calculation we
do if we want to locate the equilibrium points.) We get

2y1=0
_}.-1 = [}p

where Vi = (x1, y1). Hence, the eigenvectors associated to . = 0 (as well as the equilibrium
points) must satisfy the equation y; = 0.

To find the eigenvectors V, associated to the eigenvalue A = —1, we must solve AV, =
—V>. We get
2y =—x2
—Y2=-M.
where Vo = (x2, y2). Hence, the eigenvectors associated to A = —1 must satisfy 2y, = —x».

(e) The equation y; = 0 specifies a line of equilibrium points. Since the other eigenvalue is nega-
tive, solution curves not corresponding to equilibria move toward this line as r increases.
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(d) Since (1, 0) is an equilibrium point, it is easy to sketch the corresponding x (t)- and v(7)-graphs.

X,y

1
1

x(1)

— v I 3
—1 1

(e) To form the general solution, we must pick one eigenvector for each eigenvalue. Using part (b),
we pick Vi = (1,0), and V> = (2, —1). We obtain the general solution

Y=~k ( (1] )—I—ffgfj’_r( _? )

(f) To determine the solution whose initial condition is (1, 0), we can substitute r = 0 in the general
solution and solve for &y and A». However, since this initial condition is an equilibrium point,
we need not make the effort. We simply observe that

1
Yr) =
o=(4)

is the desired solution.
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18. (a) The characteristic equation is
2—A)6-—21)—12=22—-81=0.

Therefore, the eigenvalues are L. = 0 and A = 8.

(b) To find the eigenvectors V; associated to the eigenvalue A = 0, we must solve AV; =0V; =0
where A is the matrix that defines this linear system. (Note that this is the same calculation we
do if we want to locate the equilibrium points.) We get

2x1+4y, =0
3x1 +6y1 =0,

where V; = (x1, ¥1). Hence, the eigenvectors associated to A = 0 (as well as the equilibrium
points) must satisfy the equation x; + 2y; = 0.

To find the eigenvectors V; associated to the eigenvalue . = 8, we must solve AV, = 8V>.
We get

2x3 + 4y, = 8xp
3xz + 0y2 = 8ya,
where Vo = (x2, ¥2). Hence, the eigenvectors associated to A = 8 must satisfy 2y» = 3x».
(¢) The equation x; + 2y; = 0 specifies a line of equilibrium points. Since the other eigenvalue

is positive, solution curves not corresponding to equilibria move away from this line as ¢ in-
creases.
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(d) Ast increases, both x(#) and y(r) increase exponentially. As ¢ decreases, both x and y approach
constants that are determined by the line of equilibrium points.

X,y
10+
() —

N

T x(f)

} — ¢
—0.5 | 0.5

(e) To form the general solution, we must pick one eigenvector for each eigenvalue. Using part (b),
we pick V; = (-2, 1), and V, = (2, 3). We obtain the general solution

-2 2
Y(r):h( | )+A—233’( ; )

(f) To determine the solution whose initial condition is (1, 0), we let 1 = 0 in the general solution

21 ()=(0)

Therefore, &y = —3/8 and k» = 1/8. The particular solution is

8
Y(r) = ( ) )
_ o8

and obtain the equations

(=] [WE T N

-+
-+

[==] [FE T N [P
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19. (a) The characteristic polynomial is
(4—2(1—21) —4=2%-52,
so the eigenvalues are . = 0 and A = 5.
(b) To find the eigenvectors V; associated to the eigenvalue L = 0, we must solve AV; =0V, =0

where A is the matrix that defines this linear system. (Note that this is the same calculation we
do if we want to locate the equilibrium points.) We get

4x1 42y =0
2x1 4+ 1 =0,

where Vi = (x1, y1). Hence, the eigenvectors associated to . = 0 (as well as the equilibrium

points) must satisfy the equation y; = —2x;.
To find the eigenvectors V5 associated to the eigenvalue A = 5, we must solve AV, = 5V>.
We get

4);2 + 2}"2 = 5);2

2x2 + v2 = 5.

where Vo = (x2, ¥2). Hence, the eigenvectors associated to A = 5 must satisfy xo = 2y».

(¢) The equation y; = —2x; specifies a line of equilibrium points. Since the other eigenvalue
is positive, solution curves not corresponding to equilibria move away from this line as ¢ in-
creases.
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(d) As r increases, both x(r) and v(7) increase exponentially. As ¢ decreases, both x and y approach
constants that are determined by the line of equilibrium points.

X,y
304

204

104

—1

(e) To form the general solution, we must pick one eigenvector for each eigenvalue. Using part (b),
we pick Vi = (1, —2), and V, = (2, 1). We obtain the general solution

1 2
nn:h(_2)+hﬁ(l).

(f) To determine the solution whose initial condition is (1,0), we let t = 0 in the general solution

and obtain the equations
1 2 1

Therefore, k&1 = 1/5 and k» = 2/5, and the particular solution is

1 4.5
5 +35¢"
Y(r) = .
2, 2,5t
-3 + gﬁ’
20. (a) The characteristic equation is A2 — (a + d)A + ad — be = 0. If 0 is an eigenvalue of A, then
0 1s a root of the characteristic polynomial. Thus, the constant term in the above equation must
be 0—that is, ad — bc = det A = 0.
(b) If det A = 0, then the characteristic equation becomes 22— (a+d)) =0, and this equation has
0 as a root. Therefore 0 is an eigenvalue of A.
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21. (a) The characteristic polynomial is A2 = 0, so A = 0 is the sole eigenvalue. To sketch the phase
portrait we note that dv/dt = 0, so y(t) 1s always a constant function. Moreover, dx /dr = 2y,
so x(t) is increasing if ¥ > 0, and it 1s decreasing if vy < 0.

(b) This system is exactly the same as the one in part (a) except that the sign of dx /dr has changed.
Hence, the phase portrait is the identical except for the fact that the arrows point the other way.

4 5]
r

Page 21




Section 3.5

22. (a) This system has only one eigenvalue, A = 0, and the eigenvectors lie along the x-axis (the line
v =0).
To find the general solution, we start with an arbitrary initial condition Vg = (xp, vp). Then

0 2 1 0
V]. — — 0 V(]
0 0 0 1
. 0 2 X0 . 2}-‘0
VLo o vo ! \ 0 )
We obtain the general solution
X 2y
Y(r):( o )+I( Y0 )
Yo 0

(b) Following the procedure in part (a) we obtain

v
V1=( .‘ro)'
0

and consequently, the general solution 1s

Y(:):(IO )+r( —2Yo0 )
Yo 0
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23. (a) The characteristic polynomial is (a — A)(d — 1), so the eigenvalues are @ and d.
(b) If a # d, the lines of eigenvectors for @ and d are the x- and y-axes respectively.

(e) If a = d < 0, every nonzero vector is an eigenvector (see Exercise 14), and all the vectors point
toward the origin. Hence, every solution curve is asymptotic to the origin along a straight line.

The general solution is Y(7) = e® Yy, where Yy is the initial condition.
(d) The only difference between this case and part (c) is that the arrows in the vector field are re-
versed. Every solution tends away from the origin along a straight line.

Again the general solution is Y(¢) = ¢¥Yy, where Y is the initial condition.
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24. (a) The characteristic equationis AZ4+2A+1 = (A+1)? = 0, so the eigenvalue A = —1 is repeated.
The equilibrium point at the origin is a sink.
(b) To find the associated eigenvectors V, we must solve AV = —V where A is the matrix that
defines this linear system. This vector equation is equivalent to the system of scalar equations

—2x—y=0
4x + 2y =0,
so the eigenvectors must satisfy vy = —2x. One such eigenvector is therefore (1, —2), and all

straight-line solutions are of the form

Y1) =ke™ ( _; ) ,

(e¢) Since this system has only one eigenvalue A = —1, we know that the origin is a sink and that
all solution curves in the phase plane approach the origin tangent to the line v = —2x of eigen-
vectors. The direction of approach is determined by the direction field for the system. Solu-
tions with initial conditions that satisfy y > —2x move in a “counter-clockwise™ direction and
approach the origin in the second quadrant, and solutions with initial conditions that satisfy
y < —2x also move in a “counter-clockwise™ direction and approach the origin in the fourth
quadrant.

where £ is an arbitrary constant.
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—44

The initial condition A = (—1, 2) is an eigenvector, so the corresponding solution is a
straight-line solution. Its x(7)- and v(¢)-graphs are therefore simple exponentials that approach
0 at the rate e=*. We have y(r) = —2x(r) for all 7.

x, ¥

2

y(1)

—1- x(f]

The mitial condition B = (—1, 1) lies to the left of the line of eigenvectors. Therefore, its
solution curve heads down through the third quadrant and enters the fourth quadrant before it
tends to the origin tangent to the line vy = —2x. The y(7)-graph decreases as the x(7)-graph
increases. We note that yv(r) = 0 when the solution curve crosses the x-axis, and the two graphs
cross when the solution curve crosses the line y = x. The function x(r) continues to increase
as it becomes positive and attains its maximum value before it tends to 0. The function v(r)
assumes a minimum value before it tends to 0.
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x,y

y(t) x(¢)

— T

/ 2 4

The solution corresponding to the initial condition C = (—1, —2) behaves in a similar fash-
ion to the solution with initial condition B. The only significant difference is that C is below
the line y = x in the third quadrant. Therefore the x(¢)- and y(r)-graphs do not cross as they
tend toward 0. However, they do exhibit the remaining aspects of the graphs that correspond to
the initial condition B.

X

x(t)

ljf/\r

}s
|
I 1 1
+/ 1 2 3

) y(t)

—4

The solution corresponding to the initial condition D = (1, 0) moves to the left and up
through the first quadrant in the phase plane before it enters the second quadrant and heads
toward the origin tangent to the line y = —2x. Thus the y(#)-graph is always positive for t = 0,
and it attains a unique maximum value before it tends to 0. Initially the x(7)-graph decreases.
It crosses the y(7)-graph, becomes negative, and attains a minimum value before it tends to 0 as
t — 00.

y(t)

I*R
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