Section 3.6 solutions

1. The characteristic polynomial is
s —6s — 17,

so the eigenvalues are s = —1 and 5 = 7. Hence, the general solution is
v(t) = kre™t 4+ ke,

3. The characteristic polynomial is

s2 4 6549,
so s = —3 1s a repeated eigenvalue. Hence, the general solution is

v(t) = kie™ + kote™.

5. The characteristic polynomial is

s> 4 85 4 25,

so the complex eigenvalues are s = —4 &+ 3i. Hence, the general solution is

v(t) = k1e™ cos 3t + kre ¥ sin 3r.

7. The characteristic polynomial is

s> 425 — 3,
so the eigenvalues are s = | and s = —3. Hence, the general solution is
y(t) = ke’ + koe ™,

and we have
V(1) = ki€’ — 3kpe ™.

From the 1nitial conditions, we obtain the simultaneous equations
ki+k=6
k1 — 3 =-2.

Solving for &y and k> yields &y = 4 and k» = 2. Hence, the solution to our mnitial-value problem is
V(1) = 4e' + 27,
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Section 3.6 solutions

13. (a) The resulting second-order equation is

d*y dy
az  Car T TY
and the corresponding system 1is
dy
dr
d
d_? =—Tv — 8v.

(b) Recall that we can read off the characteristic equation of the second-order equation straight
from the equation without having to revert to the corresponding system. We obtain

AT+ 8L4+T7=0.
Therefore, the eigenvalues are Ay = —1 and A» = —7.
To find the eigenvectors associated to the eigenvalue A, we solve the simultaneous system
of equations
v=-—y
—Ty —8v=—v.

From the first equation, we immediately see that the eigenvectors associated to this eigenvalue
must satisfy v = —y. Similarly, the eigenvectors associated to the eigenvalue A, = —7 must
satisfy the equation v = —7y.

(e¢) Since the eigenvalues are real and negative, the equilibrium point at the origin is a sink, and the
system is overdamped.

(d) We know that all solution curves approach the origin
as t — 00 and, with the exception of those whose ini-

tial conditions lie on the line v = —7y, these solution
curves approach the origin tangent to the line v = —y.
y
(e) From the phase portrait, we see that y(r) increases
monotonically toward 0 as + — o00. Also, v(r) de- 5_|_
creases monotonically toward 0. It is useful to remem-
ber that v = dy/dt.
v(t)
. ¥ p t
-1 -1(";(1‘_) 1 2
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Section 3.6 solutions

15. (a) The resulting second-order equation is

d’y dy
14 415y =0
az Tt T '
and the corresponding system is

dy

—_

dt

d

d_? = —5v — 4.

(b) Recall that we can read off the characteristic equation of the second-order equation straight
from the equation without having to revert to the corresponding system. We obtain

A4 +5=0.
Therefore, the eigenvalues are Ay = —2 +iand Ap = —2 — 1.
To find the eigenvectors associated to the eigenvalue A, we solve the simultaneous system
of equations
v=(-2+1)y

—Sy —dv=(-2+1i)v.

From the first equation, we immediately see that the eigenvectors associated to this eigenvalue
must satisfy v = (—2+4i)y. Similarly, the eigenvectors associated to the eigenvalue A = —2—i
must satisfy the equation v = (—2 —i)y.

(e) Since the eigenvalues are complex with negative real part, the equilibrium point at the origin is
a spiral sink, and the system is underdamped.

(d) All solutions tend to the origin spiralling in the clock- v
wise direction with period 2. Admittedly, it 1s diffi-
cult to see these oscillations in the picture.

(e) The graph of ¥(r) initially decreases then oscillates y.v
with decreasing amplitude as it tends to 0. Similarly, /l‘

. : f
v(?) initially decreases and becomes negative, then os- Y
cillates with decreasing amplitude as it tends to 0.
1
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Section 3.6 solutions

17. (a) The resulting second-order equation is

d*y .dy
2— 43— =0,
az T
and the corresponding system 1s

dy

—_ =
dt
dv 1 3
i A

(b) Recall that we can read off the characteristic equation of the second-order equation straight

from the equation without having to revert to the corresponding system. We obtain
22 4314+ 1=0.

Therefore, the eigenvalues are Ay = —1 and A, = —1/2.
To find the eigenvectors associated to the eigenvalue A, we solve the simultaneous system

of equations
1., 3., _
—51 -5 Uv=—0.
From the first equation, we immediately see that the eigenvectors associated to this eigenvalue

must satisfy v = —y. Similarly, the eigenvectors associated to the eigenvalue A» = —1/2 must
satisfy the equation v = —y/2.
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Section 3.6 solutions

(¢) Since the eigenvalues are real and negative, the equilibrium point at the origin is a sink, and the
system is overdamped.

(d) We know that all solution curves approach the origin
as t — o0 and, with the exception of those whose

initial conditions lie on the line v = —y, these so-
lution curves approach the origin tangent to the line
v=—y/2.

(e) According to the phase plane, y(7) increases initially.
Eventually it reaches a maximum value. Then it ap-
proaches 0 as r — o0. Also, v(r) decreases, becomes
negative, and then approaches 0 from below. While (1)
sketching these graphs, it is useful to remember that

v =dy/dt. <
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Section 3.6 solutions

19. (a) The resulting second-order equation is

d%y

2—= +3y =0,

and the corresponding system 1is
dy
ar "
dv 3
a2

(b) Recall that we can read off the characteristic equation of the second-order equation straight
from the equation without having to revert to the corresponding system. We obtain

w2 43=0.

Therefore, we have pure imaginary eigenvalues, A = +i./3/2.
To find the eigenvectors associated to the eigenvalue A = i,/3/2, we solve the simultane-
ous system of equations
R 3 ¥
v= :J; ¥

—% y=1i % .
From the first equation, we immediately see that the eigenvectors associated to this eigenvalue
must satisfy v = i,/3/2 y. Similarly. the eigenvectors associated to the eigenvalue A = —i,/3/2
must satisfy the equation v = —i+/3/2 v.
(c¢) Since the eigenvalues are pure imaginary, the system is undamped. (Of course, we already knew
this because b = 0.) The natural period is 27z /+/3/2 = 47 //6.

(d) Since the eigenvalues are pure imagi- (e)
nary, we know that the solution curves y.v
are ellipses. At the point (1,0), 44+ v(t)
dY/dt = (0,—-3/2). Therefore, we 5]
know that the oscillation is clockwise. - \2;(:‘) / "’\
} N t
v 1 \J 4
_4-_
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Section 3.6 solutions

21. (a) The second-order equation is

d*y dy
az T '
so the characteristic equation is
s24+8547=0.
The roots are s = —7 and s = —1. The general solution is

v(t) =kpe™ " +kye .
(b) To find the particular solution we compute
v(t) = —Tkie "t — ke .
The particular solution satisfies
—1=y0) =k +k
5=v(0)=-Thk — k.

The first equation yields &y = —k» — 1. Substituting into the second we obtain 5 = 6k + 7,
which implies k» = —1/3. The first equation then yields &1 = —2/3. The particular solution is

v(r) = —%e_?f — %e_f.

(¢) The v(¢)- and v(r)-graphs are displayed in the solution of Exercise 13.

29, Note: We assume that 1, k and b are nonnegative—the physically relevant case. All references to
graphs and phase portraits are from Sections 3.5 and 3.6.

Table 3.1

Possible harmonic oscillators.
name eigenvalues parameters decay rate phase portrait and graphs
undamped pure imaginary b=0 no decay Figure 341
underdamped complex with b2 — dmk < 0 e~ bt/ 2m) Figure 342

negative real part
critically damped only one eigenvalue b2 — 4mk =0 e bt/ (@m) Figure 3.34
overdamped two negative real b2 — 4mk > 0 e* where Figures 3.43-3.45
—b+ b2 — 4mk
=27 ~———  and Exercise 13
m
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Section 3.6 solutions

36. (a) ¥

ANVANES
/)

t

(b) Using the model of a harmonic oscillator for the suspension system, the corresponding system
has either real or complex eigenvalues. If it has complex eigenvalues, then solutions spiral in
the phase plane and oscillations of v(7) continue for all time. If there are real eigenvalues, then
solutions do not spiral, and in fact, they cannot cross the v-axis (where y = 0) more than once.
Hence, the behavior described 1s impossible for a harmonic oscillator.

(¢) There is room for disagreement in this answer. One reasonable choice is an oscillator with
complex eigenvalues and some damping so that the system does oscillate, but the amplitude of
the oscillations decays sufficiently rapidly so that only the first two “bounces™ are of significant
size.
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