1.

Table 3.2
Possibilities for linear systems

type	condition on λ	examples
sink	$\lambda_{1}<\lambda_{2}<0$	Sec. 3.7, Fig. 3.52
saddle	$\lambda_{1}<0<\lambda_{2}$	Sec. 3.3, Fig. 3.12-3.14
source	$0<\lambda_{1}<\lambda_{2}$	Sec. 3.3, Fig. 3.19
spiral sink	$\lambda=\alpha \pm i \beta, \alpha<0, \beta \neq 0$	Sec. 3.1, Fig. 3.2 and 3.4
spiral source	$\lambda=\alpha \pm i \beta, \alpha>0, \beta \neq 0$	Sec. 3.4, Fig. 3.29-3.30
center	$\lambda_{1}= \pm i \beta, \beta \neq 0$	Sec. 3.1, Fig. 3.1 and 3.3
		Sec. 3.4, Fig. 3.28
sink	$\lambda_{1}=\lambda_{2}<0$	Sec. 3.5, Fig. 3.35-3.36
\quad (special case)	One line of eigenvectors	
source	$0<\lambda_{1}=\lambda_{2}$	Sec. 3.5, Ex. 2
\quad (special case)	One line of eigenvectors	
sink	$\lambda_{1}=\lambda_{2}<0$	Sec. 3.5, Ex. 23
\quad (special case)	Every vector is eigenvector	
source	$0<\lambda_{1}=\lambda_{2}$	Sec. 3.5, Ex. 23
\quad (special case)	Every vector is eigenvector	
no name	$\lambda_{1}<\lambda_{2}=0$	Sec. 3.5, Fig. 3.39-3.40
no name	$0=\lambda_{1}<\lambda_{2}$	Sec. 3.5, Ex. 19
no name	$\lambda_{1}=\lambda_{2}=0$	Sec. 3.5, Ex. 21
	One line of eigenvectors	
no name	$\lambda_{1}=\lambda_{2}=0$	entire plane of equilibrium points
	Every vector is an eigenvector	

3. (a)

(b) The trace T is $2 a$, and the determinant D is $-a$. Therefore, the curve in the trace-determinant plane is $D=-T / 2$. This line crosses the parabola $T^{2}-4 D=0$ at two points-at $(T, D)=$ $(0,0)$ if $a=0$ and at $(T, D)=(-2,1)$ if $a=-1$.

The portion of the line for which $a<-1$ corresponds to a positive determinant and a negative trace such that $T^{2}-4 D>0$. The corresponding phase portraits are real sinks. If $a=$ -1 , we have a sink with repeated eigenvalues. If $-1<a<0$, we have complex eigenvalues with negative real parts. Therefore, the phase portraits are spiral sinks. If $a=0$, we have a degenerate case with an entire line of equilibrium points. Finally, if $a>0$, the corresponding portion of the line is below the T-axis, and the phase portraits are saddles.
(c) Bifurcations occur at $a=-1$, where we have a sink with repeated eigenvalues, and at $a=0$, where we have zero as a repeated eigenvalue. For $a=0$, the y-axis is entirely composed of equilibrium points.
5. (a)

(b) The curve in the trace-determinant plane is the portion of the unit circle centered at 0 that lies in the half-plane $y \leq 0$.

A glance at the trace-determinant plane shows that for $-1<a<1$, we have a saddle. If $a=1$, the eigenvalues are 0 and 1 . If $a=-1$, the eigenvalues are 0 and -1 .
(c) Bifurcations occur only at $a= \pm 1$. For these two special values of a, we have a line of equilibrium points. The nonzero equilibrium points disappear if $-1<a<1$.
7. (a)

(b) The trace T is $2 a$, and the determinant D is $a^{2}-a$. Therefore, the curve in the trace-determinant plane is

$$
\begin{aligned}
D & =a^{2}-a \\
& =\left(\frac{T}{2}\right)^{2}-\frac{T}{2} \\
& =\frac{T^{2}}{4}-\frac{T}{2} .
\end{aligned}
$$

This curve is a parabola. It meets the repeated-eigenvalue parabola (the parabola $D=T^{2} / 4$) if

$$
\frac{T^{2}}{4}-\frac{T}{2}=\frac{T^{2}}{4}
$$

Solving this equation yields $T=0$, which corresponds to $a=0$.
This curve also meets the T-axis (the line $D=0$) if

$$
\frac{T^{2}}{4}-\frac{T}{2}=0
$$

so if $T=0$ or $T=2$, then $D=0$.
From the location of the parabola $D=T^{2} / 4-T / 2$ in the trace-determinant plane, we see that the phase portrait is a spiral sink if $a<0$ since $T<0$, a saddle if $0<a<1$ since $0<T<2$, and a source with distinct real eigenvalues if $a>1$ since $T>2$.
(c) Bifurcations occur at $a=0$, where we have repeated zero eigenvalues, and at $a=1$, where we have a single zero eigenvalue.
9. The eigenvalues are roots of the equation $\lambda^{2}-2 a \lambda+a^{2}-b^{2}=0$. These roots are

$$
a \pm \sqrt{b^{2}}=a \pm|b|
$$

So we have a repeated zero eigenvalue if $a=b=0$.
If $a= \pm b$, then one of the eigenvalues is 0 , and as long as $a \neq 0($ so $b \neq 0)$, the other eigenvalue is nonzero.

The eigenvalues are repeated (both equal to a) if $b=0$. The eigenvalues are never complex since $\sqrt{b^{2}} \geq 0$.

If $a>|b|$, then $a \pm|b|>0$, so we have a source with real eigenvalues. If $a<0$ and $-a>|b|$, then $a \pm|b|<0$, so we have a sink with real eigenvalues. In all other cases we have a saddle.
11. (a) This second-order equation is equivalent to the system

$$
\begin{aligned}
& \frac{d y}{d t}=v \\
& \frac{d v}{d t}=-3 y-b v
\end{aligned}
$$

Therefore, $T=-b$ and $D=3$. So the corresponding curve in the trace-determinant plane is $D=3$.
(b)

(c) The line $D=3$ in the trace-determinant plane crosses the repeated-eigenvalue parabola $D=T^{2} / 4$ if $b^{2}=12$, which implies that $b=2 \sqrt{3}$ since b is a nonnegative parameter. If $b=0$, we have pure imaginary eigenvalues-the undamped case. If $0<b<2 \sqrt{3}$, the eigenvalues are complex with a negative real part-the underdamped case. If $b=2 \sqrt{3}$, the eigenvalues are repeated and negative-the critically damped case. Finally, if $b>2 \sqrt{3}$, the eigenvalues are real and negative-the overdamped case.

