1. Table 3.2 Possibilities for linear systems

type	condition on λ	ex ampl e s
sink	$\lambda_1 < \lambda_2 < 0$	Sec. 3.7, Fig. 3.52
saddle	$\lambda_1 < 0 < \lambda_2$	Sec. 3.3, Fig. 3.12-3.14
source	$0 < \lambda_1 < \lambda_2$	Sec. 3.3, Fig. 3.19
spiral sink	$\lambda = \alpha \pm i\beta, \alpha < 0, \beta \neq 0$	Sec. 3.1, Fig. 3.2 and 3.4
spiral source	$\lambda = \alpha \pm i\beta, \alpha > 0, \beta \neq 0$	Sec. 3.4, Fig. 3.29-3.30
center	$\lambda_1 = \pm i\beta, \beta \neq 0$	Sec. 3.1, Fig. 3.1 and 3.3
		Sec. 3.4, Fig. 3.28
sink	$\lambda_1 = \lambda_2 < 0$	Sec. 3.5, Fig. 3.35-3.36
(special case)	One line of eigenvectors	
source	$0 < \lambda_1 = \lambda_2$	Sec. 3.5, Ex. 2
(special case)	One line of eigenvectors	
sink	$\lambda_1 = \lambda_2 < 0$	Sec. 3.5, Ex. 23
(special case)	Every vector is eigenvector	
source	$0 < \lambda_1 = \lambda_2$	Sec. 3.5, Ex. 23
(special case)	Every vector is eigenvector	
no name	$\lambda_1 < \lambda_2 = 0$	Sec. 3.5, Fig. 3.39-3.40
no name	$0 = \lambda_1 < \lambda_2$	Sec. 3.5, Ex. 19
no name	$\lambda_1 = \lambda_2 = 0$	Sec. 3.5, Ex. 21
	One line of eigenvectors	
no name	$\lambda_1 = \lambda_2 = 0$	entire plane of equilibrium points
	Every vector is an eigenvector	

3. (a)

(b) The trace T is 2a, and the determinant D is -a. Therefore, the curve in the trace-determinant plane is D = -T/2. This line crosses the parabola $T^2 - 4D = 0$ at two points—at (T, D) = (0, 0) if a = 0 and at (T, D) = (-2, 1) if a = -1.

The portion of the line for which a < -1 corresponds to a positive determinant and a negative trace such that $T^2 - 4D > 0$. The corresponding phase portraits are real sinks. If a = -1, we have a sink with repeated eigenvalues. If -1 < a < 0, we have complex eigenvalues with negative real parts. Therefore, the phase portraits are spiral sinks. If a = 0, we have a degenerate case with an entire line of equilibrium points. Finally, if a > 0, the corresponding portion of the line is below the T-axis, and the phase portraits are saddles.

(c) Bifurcations occur at a = -1, where we have a sink with repeated eigenvalues, and at a = 0, where we have zero as a repeated eigenvalue. For a = 0, the y-axis is entirely composed of equilibrium points.

5. (a)

(b) The curve in the trace-determinant plane is the portion of the unit circle centered at 0 that lies in the half-plane $y \le 0$.

A glance at the trace-determinant plane shows that for -1 < a < 1, we have a saddle. If a = 1, the eigenvalues are 0 and 1. If a = -1, the eigenvalues are 0 and -1.

(c) Bifurcations occur only at $a = \pm 1$. For these two special values of a, we have a line of equilibrium points. The nonzero equilibrium points disappear if -1 < a < 1.

7. (a)

(b) The trace T is 2a, and the determinant D is a^2-a . Therefore, the curve in the trace-determinant plane is

$$D = a^{2} - a$$

$$= \left(\frac{T}{2}\right)^{2} - \frac{T}{2}$$

$$= \frac{T^{2}}{4} - \frac{T}{2}.$$

This curve is a parabola. It meets the repeated-eigenvalue parabola (the parabola $D=T^2/4$) if

$$\frac{T^2}{4} - \frac{T}{2} = \frac{T^2}{4}.$$

Solving this equation yields T = 0, which corresponds to a = 0.

This curve also meets the T-axis (the line D=0) if

$$\frac{T^2}{4} - \frac{T}{2} = 0,$$

so if T = 0 or T = 2, then D = 0.

From the location of the parabola $D = T^2/4 - T/2$ in the trace-determinant plane, we see that the phase portrait is a spiral sink if a < 0 since T < 0, a saddle if 0 < a < 1 since 0 < T < 2, and a source with distinct real eigenvalues if a > 1 since T > 2.

(c) Bifurcations occur at a = 0, where we have repeated zero eigenvalues, and at a = 1, where we have a single zero eigenvalue.

9. The eigenvalues are roots of the equation $\lambda^2 - 2a\lambda + a^2 - b^2 = 0$. These roots are

$$a \pm \sqrt{b^2} = a \pm |b|.$$

So we have a repeated zero eigenvalue if a = b = 0.

If $a = \pm b$, then one of the eigenvalues is 0, and as long as $a \neq 0$ (so $b \neq 0$), the other eigenvalue is nonzero.

The eigenvalues are repeated (both equal to a) if b = 0. The eigenvalues are never complex since $\sqrt{b^2} > 0$.

If a > |b|, then $a \pm |b| > 0$, so we have a source with real eigenvalues. If a < 0 and -a > |b|, then $a \pm |b| < 0$, so we have a sink with real eigenvalues. In all other cases we have a saddle.

11. (a) This second-order equation is equivalent to the system

$$\frac{dy}{dt} = v$$

$$\frac{dv}{dt} = -3y - bv.$$

Therefore, T = -b and D = 3. So the corresponding curve in the trace-determinant plane is D = 3.

(b)

(c) The line D=3 in the trace-determinant plane crosses the repeated-eigenvalue parabola $D=T^2/4$ if $b^2=12$, which implies that $b=2\sqrt{3}$ since b is a nonnegative parameter. If b=0, we have pure imaginary eigenvalues—the undamped case. If $0< b<2\sqrt{3}$, the eigenvalues are complex with a negative real part—the underdamped case. If $b=2\sqrt{3}$, the eigenvalues are repeated and negative—the critically damped case. Finally, if $b>2\sqrt{3}$, the eigenvalues are real and negative—the overdamped case.