Chapter 4 solutions

3. To compute the general solution of the unforced equation, we use the method of Section 3.6. The
characteristic polynomial is
52— 52,

so the eigenvalues are s = —1 and s = 2. Hence, the general solution of the homogeneous equation
is
kie -t + ffgfj’zr.

To find a particular solution of the forced equation, we guess y, (1) = ke3' . Substituting into the
left-hand side of the differential equation gives
d*y p  dyp

. 3 27,3 3
5 — - — 2vp = %ke”' — 3ke” — ke

— dke™ .

In order for y,(t) to be a solution of the forced equation, we must take £ = 5/4. The general solution
of the forced equation is
y(1) = ke +kpe® + %63‘.

5. To compute the general solution of the unforced equation, we use the method of Section 3.6. The
characteristic polynomial 1s
5% 4-4s + 13,

so the eigenvalues are s = —2 £ 3i. Hence, the general solution of the homogeneous equation is
k1e % cos 3t + kre ' sin 3t.

To find a particular solution of the forced equation, we guess y, (1) = ke . Substituting into
the left-hand side of the differential equation gives
d?y p dyp

— +4—=5 + 13y, = 4ke ™ — 8ke ™ 4 13ke™

= Oke .

In order for y,(7) to be a solution of the forced equation, we must take ¥ = —1/3. The general
solution of the forced equation is

(1) = kie % cos 3t 4+ kre 2 sin 3t — %e—zr_
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17. (a) The characteristic polynomial of the unforced equation is
s> 1+ 4s +20.
So the eigenvalues are s = —2 + 4i, and the general solution of the unforced equation is
kre % cosdr + kre > sindr.

To find a particular solution of the forced equation, we guess y,(1) = ke—% . Substituting
vp(?) into the left-hand side of the differential equation gives
d*y dy _ _ _
— + 4= 20y, = dke ™ — 8k + 20k
= 16ke™.

So k = 1/16 yields a solution of the forced equation.
The general solution of the forced equation is therefore

y(r) = kie % cosdt 4+ kre 2 sindr + %e_z".
(b) The derivative of the general solution 1s
V(1) = —2k1e~* cosdr — Akye ™ sindr — 2kye™ sindt + Akpe ™ cosdr — e,

8
To find the solution with v(0) = ¥'(0) = 0, we evaluate at 1 = 0 and obtain the simultaneous

equations
ki + % =0
—2k1 + 4k, — 5 =0.

Solving, we find that &1 = —1/16 and k> = 0, so the solution of the initial-value problem is

v(r) = —1]—63_2! cosdr + %6_2‘.

(¢) Every solution tends to zero like ¢~ and all but one exponential solution oscillates with fre-
quency 2/m.

Page 2




Chapter 4 solutions

19.

The natural guesses of y,(r) = ke~ and y,(r) = kre™" fail to be solutions of the forced equa-
tion because they are both solutions of the unforced equation. (The characteristic polynomial of the
unforced equation is

s2 425 4+ 1,

which has —1 as a double root.)
So we guess y,(1) = kt?e~". Substituting this guess into the left-hand side of the differential
equation gives
d>yp dyp —t —t 2 —t —t 2t 2t
7 +2? +vp = (2ke —dkte™ +hkte ")+ 2(2kte —kte ") +kre
=2ke™".

So k = 1/2 yields the solution

2 _—t

yp(t) = %r e .
From the characteristic polynomial, we know that the general solution of the unforced equation
is
J{']é’_r +;{'2I€_I.
Consequently, the general solution of the forced equation is

v(t) = ke +hkare™ + %rze_r.

. If we guess a constant function of the form y,(r) = k, then substituting y,(r) into the left-hand side

of the differential equation yields

d? (k) dk)
a2 TPt

gk =040+ gk
= qk.

Since the right-hand side of the differential equation is simply the constant ¢, X = ¢/q yields a con-
stant solution.

Page 3




Chapter 4 solutions

21. (a) The characteristic polynomial of the unforced equation is
s> — 55 4 4.
So the eigenvalues are s = 1 and s = 4, and the general solution of the unforced equation is
ket +ke¥.

To find one solution of the forced equation, we guess the constant function y,(r) = k.
Substituting y,(7) into the left-hand side of the differential equation, we obtain
d>y » dv
dr? ar T +
Hence, & = 5/4 yields a solution of the forced equation. The general solution of the forced
equation is
y(1) = ke’ + ke + fT-
(b) To find the solution satisfying the initial conditions ¥(0) = ¥'(0) = 0. we compute the deriva-

tive of the general solution
V) =ke + Alere™ .

Using the initial conditions and evaluating v(z) and y'(7) at r = 0, we obtain the simultaneous
equations
ki+k+3=0
k1 + 4k =0.

Solving for k7 and k» gives &y = —5/3 and k» = 5/12. The solution of the initial-value problem

15

. 5 5 t 5 4t
‘»(I}:z—gi’ —|—ﬁ£’ .
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25. (a) The characteristic polynomial of the unforced equation is

s +9.
So the eigenvalues are s = +3i, and the general solution of the unforced equation is
k1 cos 3t + k2 sin 3t.

To find one solution of the forced equation, we guess y,(r) = ke™'. Substituting y,(¢) into
the left-hand side of the differential equation, we obtain

dz

T +!51"-,1IJ — ke ! 4 ke

= 10ke™".
Hence, £ = 1/10 yields a solution of the forced equation. The general solution of the forced

equation is
v(t) = k1 cos 3r + ko sin 3¢ + %e_r

(b) To find the solution satisfying the initial conditions y(0) = y'(0) = 0, we compute the deriva-

tive of the general solution

v'(t) = —3ky sin 3t + 3ky cos 3t — %e_t
Using the initial conditions and evaluating v(7) and y'(7) at r = 0, we obtain the simultaneous
equations

k14 15 =0
3ky — 35 =0.
Solving for &1 and k> gives &1 = —1/10 and k2 = 1/30. The solution of the initial-value
problem is
‘,(I)—— -::053!4— sm3e‘—|—

(e) Since the function e=7/10 — 0 quickly, the solution quickly approaches a solution of the un-

forced oscillator.
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31. (a) The general solution for the homogeneous equation is
k1 cos2r + ko sin 2t.
Suppose yy(t) = at® + bt + c. Substituting y p(t) mto the differential equation, we get
2.,

F-Fd-}’p = 324243

2a +Mat* + bt +¢) = =32 +2t +3

dar® + 4bt + 2a + 4c) = 31> + 21 + 3.

Therefore, y,(7) is a solution if and only if

dg = -3
4b =2
2a +4e =3.

Therefore,a = —3/4,b = 1/2, and ¢ = 9/8. The general solution is
v(t) =ki1cos2t + K2 sin2r — ;3[!2 — %.f + %.

(b) To solve the initial-value problem, we use the initial conditions v(0) = 2 and y'(0) = 0 along
with the general solution to form the simultaneous equations

ki +5=2
2%; + 4 =0.
Therefore, k&1 = 7/8 and k» = —1/4. The solution is

v(r) = %00321 — % sin 2t — 42:‘2 + %e‘ + %.
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1. Recalling that the real part of €'’ is cost, we see that the complex version of this equation is

d*y dv .
—— 43— 4 2y=¢",
di? ar
To find a particular solution, we guess V() = ae'’. Then dy./dt = iae'’ and d?y./dt* = —ae'.

Substituting these derivatives into the equation and collecting terms yields
(—a 4 3ia + 2a)e " = €',
which is satisfied if

(1+3i)a=1.
Hence, we must have
11 3.
“TT1y3 10 10
So
_U)_l—fii ir_1—3f( f 4 ising
Yelt) = ——¢" = —5—(cos +ism
is a particular solution of the complex version of the equation. Taking the real part. we obtain the
solution

y(t) = 11—0 cost + % sinf.

To produce the general solution of the homogeneous equation, we note that the characteristic
polynomial 5% + 35 + 2 has roots s = —2 and 5 = —1. So the general solution is

v(t) = Fie ™ Lhe ™ + ll—Dcosr + % sinf.

11. From Exercise 5, we know that the general solution of this equation is

Py — 4t -2, T 6
V(1) =kie”" +kae™ ™ + gz cost + gz sint.

To find the desired solution, we must solve for &3 and A using the initial conditions. We have

R*1+R*2+%:0
—4ky — 2k + g =0.

We obtain &1 = 2/17 and k&> = —1/5. The desired solution is

2 4t —2t 7 6 _:
= +Ecosr+ﬁsmr.

. 1
y(#) = e " — 3¢
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15. (a) If we guess
Vp(t) = acos 3t 4 bsin 3z,

then
yp(t) = —3asin3r 4 3bcos 3r

and
_vi,’(r} = —9a cos 3r — 95 sin 3r.

Substituting this guess and its derivatives into the differential equation gives
(—8a 4+ 9b)cos 3t 4+ (—9a — 8b) sin 31 = cos 3r.

Thus y,(z) 1s a solution if @ and b satisfy the simultaneous equations

—Ba+9% =1
—9q — 8b =0.

Solving these equations for @ and &, we obtain @ = —8/145 and & = 9/145, so

; = _5 : 2_sin’
Vp(t) = —qz5 €08 3t + 3z sin 3z

is a solution.

(b) If we guess
vp(t) = Acos(3r 4 ¢),

then
}':D(.f} = —3Asin(3r + ¢)

and
_\;;(.r) = —9Acos(3r + ¢).

Substituting this guess and its derivatives into the differential equation yields
—8Acos(3r + ¢) — 9A sin(37 + ¢p) = cos 3r.
Using the trigonometric identities for the sine and cosine of the sum of two angles, we have
—8A (cos 3t cos¢ — sin 3t singp) — 9A (sin 37 cos ¢ + cos 37 sin¢p) = cos 3t.
This equation can be rewritten as
(—8Acos¢p — 9Asing) cos 3 + (8Asing — 9A cos¢) sin 3t = cos 3r.

It holds if
—8Acos¢p —9Asing =1

9Acos¢ — 8Asing =0.
Multiplying the first equation by 9 and the second by 8 and adding yields

145Asing = —9.
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Similarly, multiplying the first equation by —8 and the second by 9 and adding yields

145A cos¢p = —8.
Taking the ratio gives _

vy 2

cos ¢ 8

Also, squaring both 145A sin¢ = —9 and 145A cos ¢ = —8 yields
145% A% cos”? ¢ + 1452 A? sin® ¢ = 145,

so A% = 1/145.

We can use either A = 1/4/145 or A = —1/+/145, but this choice of sign for A effects
the value of ¢. If we pick A = —1/4/145. then /145 sing = 9, /145 cos¢ = 8, and
tan ¢ = 9/8. In this case, ¢ = arctan(9/8). Hence, a particular solution of the original equation
1s

1 9
V() = cos | 3r 4 arctan — | .
Yp(1) V145 ( 3)
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17. Since p and g are both positive, the solution of the homogeneous equation (the unforced response)
tends to zero. Hence, we can match solutions to equations by considering the period (or frequency)
and the amplitude of the steady-state solution (forced response). We also need to consider the rate at
which solutions tend to the steady-state solution.

(a)

(b)

(c)
(d)

The steady-state solution has period 27 /3, and since the period of the steady-state solution
is the same as the period of the forcing function, these solutions correspond to equations (v)
or (vi). Moreover, this observation applies to the solutions in part (d) as well. Therefore, we
need to match equations (v) and (vi) with the solutions in parts (a) and (d).

Solutions approach the steady-state faster in (d) than in (a). To distinguish (v) from (vi),
we consider their characteristic polynomials. The characteristic polynomial for (v) is

s 4554 1,
which has eigenvalues (—5 + 4/21)/2. The characteristic polynomial for (vi) is
s 4+s+1,

which has eigenvalues (—1 + i+/3)/2. The rate of approach to the steady-state for (v) is deter-
mined by the slow eigenvalue (—5++/21)/2 & —0.21. The rate of approach to the steady-state
for (vi) 1s determined by the real part of the eigenvalue, —0.5. Therefore, the graphs n part (a)
come from equation (v), and the graphs in part (d) come from equation (vi).
The steady-state solution has period 27, and since the period of the steady-state solution is the
same as the period of the forcing function, these solutions correspond to equations (1) or (i1).
Moreover, this observation applies to the solutions in part (c) as well. Therefore, we need to
match equations (i) and (ii) with the solutions in parts (b) and (c).

The amplitude of the steady-state solution is larger in (b) than in (c). To distinguish (1)
from (i1), we calculate the amplitudes of the steady-state solutions for (1) and (11). If we com-
plexify these equations, we get

dy , dy it
— — y=e
az " Par T
Guessing a solution of the form y.(7) = ae'’, we see that

1

f=——-.
(g — 1)+ pi

The amplitude of the steady-state solution is |a|. For equation (i), |a| = 1/+/29 ~ 0.19, and for
equation (ii), it is 1/4/5 & 0.44. Therefore, the graphs in part (b) correspond to equation (ii),
and the graphs in part (¢) correspond to equation (i).

See the answer to part (b).

See the answer to part (a).
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23. Note that the real part of
(k1 — ik2)e®! = (ky — iks)(cos Bt + i sin Br)
is
v(r) = ky cos Bt + k» sin Bt.
]__,et K e'? be the polar form of the complex number &1 + ik>. Then the polar form of &1 — ik is
Ke™*?. Using the Laws of Exponents and Euler’s formula, we have
(k1 — ik2)e'Pt = Ke 9Pt
_ kB0
= K(cos(fr — ¢) + i sm(fr — ¢),
and the real part is K cos(Bt — ¢). Hence, we see that
v(t) = ky cos Bt + ko sin St

can be rewritten as

V(1) = K cos(Br — ¢).
1. The complex version of this equation is

dzf" it
ﬁ + 9‘; = EI -

Guessing vq(f) = ae'’ as a particular solution and substituting this guess into the left-hand side of

the differential equation yields

8ae'! = .

Thus, v.(r) is a solution if 8a = 1. The real part of
Ve(t) = %eﬂ = %(cosr +isinf)

is ¥(1) = %cosr. This y(¢) 1s a solution to the original differential equation. [Because there is no
dy/dt-term (no damping), we could have guessed a solution of the form v(f) = acosr instead of
using the complex version of the equation.]

To find the general solution of the homogeneous equation, we note that the characteristic poly-
nomial is s> + 9, which has roots s = 43i. So the general solution of the original equation is

v(t) = ky cos 3t + ko sin 31 + %cos r.
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5. The complex version of the equation is

Guessing V() = ae’’ as a particular solution and substituting this guess into the left-hand side of

the differential equation, we see that @ must satisfy
—9a +9% =2,

which 1is impossible. Hence, the forcing is in resonance with the associated homogeneous equation.
We must make a second guess of y.(#) = ate>*!. This guess gives

yo(t) = a(l + 3ine*

and _
¥/(1) = a(6i — 9r)e*.

Substituting y.(7) and its second derivative into the differential equation, we obtain
a(6i — 9™ + 9are™ = 27,

which simplifies to
6aie® =263,
Thus, y.(¢) 1s a solution if @« = 2/(6i) = —i /3. Taking the real part of

Ve(r) = —}it(cos 37 +isin3r),

we obtain the solution
y(t) = %s‘ sin 3¢

of the original equation.

To find the general solution of the homogeneous equation, we note that the characteristic poly-
nomial is s> + 9, which has roots 5 = +3i.

Hence, the general solution of the original equation is

v(t) = kycos 3t + kp sin 3¢ + %r sin 31.
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9. From Exercise 1, we know that the general solution 1s
v(t) = kycos 3t + ko sin 3¢ + % cost.

So
¥'(1) = —3ky sin 3¢ + 3ky cos 31 — g sin .

Using the initial conditions y(0) = 0 and y'(0) = 0. we obtain the simultaneous equations
ki+g=0
3ky =0,
which imply that &y = —1/8 and k> = 0. The solution to the initial-value problem is

y(t) = —11; cos 3r + 11; cost.

13. From Exercise 5, we know that the general solution is
v(t) = kycos 3t + ko sin 3¢ + %I sin 3.

So
¥'(t) = —3k1 sin 3¢ + 3k2 cos 3¢ + 3 sin 37 + 7 cos 31.

From the initial condition y(0) = 2, we see that &y = 2. Using the initial condition y'(0) = —9, we
have 3k» = —9. Hence, k» = —3. The solution to the initial-value problem is

v(t) = 2cos3t — 3sin3r + %Isin_%.r.
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15. The characteristic polynomial of the unforced equation is s2 + 4, which has roots s = +2i. So the
natural frequency 1s 2/(27), and the forcing frequency is 9/(87).

(a) The frequency of the beats is
-2 1

dr lém’
and therefore, the period of one beat is 16 ~ 50.

L L=l

(b) The frequency of the rapid oscillations 1is

2+2 17
ir L6
Therefore, there are 17 rapid oscillations in each beat.
(e) y
>t

I

LTI
UV%U

e

20. The crystal glass and the opera singer’s voice have similar frequencies. The singer’s voice becomes a
driving force, and the glass is shattered due to resonance. If the recorded voice has the same effect on
the glass, the recorded voice also has a frequency similar to the glass’s frequency. Thus, the recorded
sound must have a frequency that is very close to the frequency of the original sound.
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21.

22,

23.

24.

(a) The graph shows either the solution of a resonant equation or one with beats whose period is
very large. The period of the beats in equation (iii) is 47, and the period of the beats in equa-
tion (iv) is 4w/(4 — +/14) ~ 48.6. Hence this graph must correspond to a solution of the
resonant equation —equation (v).

(b) The graph has beats with period 4. Therefore, this graph corresponds to equation (1i1).

(e) This solution has no beats and no change in amplitude. Therefore, it corresponds to either (1),
(i1), or (vi). Note that the general solution of equation (i) is

kycosdt + ky sindr + g,
and the general solution of equation (ii) is
ki cosdt +kysindt — 3.

Equation (iv) has a steady-state solution whose oscillations are centered about y = 0. Since
the oscillations shown are centered around a positive constant, this function is a solution of
equation (1).

(d) The graph has beats with a period that is approximately 50. Therefore, this graph corresponds
to equation (1v) (see part (a)).

The frequency of the stomping is almost the same as the natural frequency of the swaying motion
of the stadium. Therefore, the stadium structure reacted violently due to the resonant effects of the
stomping.

The equation of motion for the unforced mass-spring system is

d*y
d_r:'l + 16y =0,
so the natural period 1s 27 /4 = w/2 ~ 1.57.

Tapping with the hammer as shown increases the velocity if the mass i1s moving to the right at the
time of the tap and decreases the velocity if the mass 1s moving to the left at the time of the tap. Faster
motion results in higher amplitude oscillations. Since none of the tapping periods is exactly w /2, the
taps sometimes increase the amplitude and sometimes decrease the amplitude of the oscillations (that
is, resonance does not occur).

The period T = 3/2 is closest to the natural period and hence for taps with this period we expect
the largest amplitude oscillations.

To produce the most dramatic effect, the forcing frequency due to the speed bumps must agree with
the natural frequency of the suspension system of the average car. Therefore, the speed bumps should
be spaced so that the amount of time between bumps is exactly the same as the natural period of the
oscillator. Since the natural period of the oscillator is 2 seconds, we compute the distance that the car
travels in 2 seconds. At 10 miles per hour, the car travels 1/180 miles in 2 seconds, and 1/180 miles
is 29 feet, 4 inches.
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