Nonlinear systems solutions

1. The linearizations of systems (i) and (iii) are both

dx

E =2x —+ v
dy

—_—— _'\'.1,

dr ;

so these two systems have the same “local picture™ near (0, 0). This system has eigenvalues 2 and
—1; hence, (0, 0) 1s a saddle for these systems. System (i1) has linearization

dx
d_v__
{fr _:‘.!

which has eigenvalues 2 and 1, hence, (0, 0) 1s a source for this system.

3. (a) The linearized system is

We can see this either by “dropping higher-order terms™ or by computing the Jacobian matrix
-2 |
2x -1

(b) The eigenvalues of the linearized system are —2 and —1, so (0, 0) is a sink.

(¢) The vector (1, 0) is an eigenvector for eigenvalue —2 and (1, 1) is an eigenvector for the eigen-
value —1.

and evaluating it at (0, 0).
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Nonlinear systems solutions

9. (a) The equilibrium points are (0, 0), (0, 25), (100, 0) and (75, 12.5). We classify these equilib-

rium points by computing the Jacobian matrix, which is

100 — 2x — 2y —2x
—y 150 —x — 12y )’

and evaluating it at each of the equilibrium points. At (0, 0), the Jacobian matrix is

100 O
0 150 /)°

and the eigenvalues are 100 and 150. So this point is a source. At (0, 25), the Jacobian matrix

15
50 0
25 150 }°

and the eigenvalues are 50 and —150. Hence, this point is a saddle. At (100, 0), the Jacobian

matrix is
—100 =200
0 50 ’

and the eigenvalues are —100 and 50. Therefore, this point is a saddle. Finally, at (75, 12.5),

the Jacobian matrix 1s
-75 —150
—125 75 ’

and the eigenvalues are approximately —32 and —118. So this point is a sink.
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(b)
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Nonlinear systems solutions

11. (a) The equilibrium points in the first quadrant are (0, 0), (0, 50) and (40, 0). To classify these

equilibrium points, we compute the Jacobian matrix, which is

—2x —y+40 —X
—2xy —x2 —3y2 42500 )’

and we evaluate it at each of the points. At (0, 0), the Jacobian matrix is

40 0
0 2500 /)’

which has eigenvalues 40 and 2500. Therefore, (0, 0) 1s a source. At (0, 50), the Jacobian

matrix is
—10 0
0 —5000 J°

which has eigenvalues —10 and —5000. So (0, 50) 1s a sink. At (40, 0), the Jacobian matrix 1s

—40 —40
0 900 /’
which has eigenvalues —40 and 900. Hence, (40, 0) is a saddle.
(b) ¥ ¥ ¥

4_-
52"'
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Nonlinear systems solutions

15. (a) The equilibrium points are (0, 0), (1, 1) and (2, 0). We determine the type of each of these
points by computing the Jacobian, which 1s

2-2x—y —X
-y 2y —x |’

and evaluating it at the points. At (0, 0), the Jacobian is

2 0
0 0]/’

which has eigenvalues 2 and 0. An eigenvector for the eigenvalue 2 is (1, 0), so solutions move
away from the origin parallel to the x-axis. On the line x = 0, we have dy/dt = y? so solutions
move upwards when y # 0. Hence, (0, 0) is a node. However, solutions near the origin in the
first quadrant move away from the origin as r increases. At (1, 1), the Jacobian is

(7))

which has eigenvalues +/2.So (1, 1) is a saddle. At (2, 0), the Jacobian is

(b) y
0.02 -

Y

v

0.01

k
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Nonlinear systems solutions

2 are equilibrium

21. (a) The only equilibrium points occur if @ = 0. Then all points on the curve y = x
points.
{(b) The bifurcation occurs at a = 0.
(e) If a < 0, all solutions decrease in the y-direction since dy/dt < 0. If a > 0, all solutions
increase in the y-direction since dy/dt > 0. If a = 0, there is a curve of equilibrium points

located along v = x2, and all solutions move horizontally.

Phase portrait fora < 0 Phase portrait fora =0 Phase portrait fora = 0
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Nonlinear systems solutions

26. Since this is a competing species model, @ = 0. The equilibrium points are (0, 0), (0, a), (70, 0), and
(@ — 70,140 — a). If @ = 70, the second and fourth of these points coincide. If @ = 140, the third
and fourth coincide. Hence bifurcations occur at these two a-values.

For 70 < a < 140 there 1s an equilibrium point that does not lie on the axes. This equilibrium
point is a saddle whose separatrices divide the first quadrant into two regions. In one region, all
solutions tend to (0, a) and in the other, to (70, 0). If 0 < a < 70, all solutions (not on the axes) tend
to the equilibrium point at (70, 0); that is, the y-species dies out. If @ = 140, all solutions (not on the
axes) tend to the equilibrium point at (0, a); that is, the x-species dies out.

100

1
20 40 60 80 100

40 80

Phase portrait for a = 140

80
60
40
20

X

20 40 60 80 100

Phase portrait fora = 70

160
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Nonlinear systems solutions

27. (a) The fact that (0, 0) is an equilibrium point says that, if both X and Y are absent from the island,
then neither will ever migrate to the island. However, it may be possible for one species to
migrate if the other is already on the island.

(b) If a small population consisting solely of one of the species reproduces rapidly, then we expect
both df/0x and dg/dy to be positive and large at (0, 0). We expect this because these partials
are the coefficients of x and y in the linearization at (0, 0).

(e¢) Since the species compete, an increase in vy decreases dx/dt and an increase in x decreases
dy/dt. Hence,both df/0y and dg/dx are negative at (0, 0) since df/dy is the coefficient of v in
the dx /dt equation and dg /0x is the coefficient for x in the dy/dt equation for the linearization
at the origin.

(d) Suppose the coefficient matrix of the linearized system 1s

(20)

with a and d positive and large and b and ¢ negative. The eigenvalues are

(a+d)++/(a —d)? +4bc

2

-

If b and ¢ are near zero, then (0, 0) is a source. If & and ¢ are very negative, then (0,0) is a
saddle.

It is also possible to have 0 as an eigenvalue of the linearized system in which case the
linearization fails to determine the behavior of the nonlinear system near (0, 0).

(e) For the linearized system, note that dx /dr < 0 along the positive v-axis and dv/dt < 0 along
the positive x-axis. If the origin is a saddle, the eigenvectors for the negative eigenvalue must be
in the first and third quadrants, and a typical solution near the origin starting in the first quadrant
has one of the species going extinct. If the origin is a source, then a typical solution near the
origin has one or the other of the species going extinct except for one curve of solutions in the
first quadrant.

y
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28. (a) At(0,0),9f/0x and dg /0y are positive and small.
(b) At (0,0), df/0y and dg/dx are negative and large in absolute value.
(e) With these assumptions, the Jacobian matrix is

(2 %)

where @ and d are small and positive, but & and ¢ are negative with much larger absolute value.
Since the eigenvalues of this matrix are given by

a+d+/(a+d)* —4(ad — bc)
2

and since (a + d)?> > 0 and ad — bc < 0, the term inside the square root is positive. Thus both

eigenvalues are real.
The term a + d 1s very small and positive, but the term inside the square root is large and

positive. So one of the eigenvalues is positive, and the other is negative. Thus (0, 0) is a saddle.

(d) Note that dx /dt < 0 on the positive y-axis and dy/dt < 0 on the positive x-axis. The signs

are reversed on the negative axes. Hence, the eigenvectors for the negative eigenvalue are in
the first and third quadrants and those for the poistive eigenvalue are in the second and fourth
quadrants. Solutions starting near the origin in the first quadrant have either one or both species
going extinct.
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29. (a) At (0,0),af/ax 1s positive and large, and dg /vy 1s positive and small.
(b) At (0, 0), af/9dy is negative with a large absolute value and dg/dx = 0.
(e) With these assumptions, the Jacobian matrix is

(50)

wherea > 0,5 < 0, and d > 0 is much smaller than a. The eigenvalues of this matrix are a
and d, so (0, 0) 1s a source.

(d) Note that for v = 0, dy/dt = 0, and the eigenvector for a is in the x-direction.

o e

1

30. (a) If z is fixed and v increases, then our assumption is that 4y /dt decreases. That 1s, 3h/dy < 0.
Similarly, 8k /dz < 0.

(b) Similarly, 8/1/9z and 8k /9y are both positive.
(¢) With these assumptions, the Jacobian matrix is

(%)

wherea < 0,6 > 0,¢ > 0,and d < 0. The eigenvalues of this matrix are

a+d++/(a—d?+4bc

2

-

These eigenvalues are always real. since the term inside the square root is positive. One eigen-
value is always negative (choose the negative square root). The other may be positive or nega-
tive. Thus, we only have saddles or sinks for equilibrium points.
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Nonlinear systems solutions

1. For x- and y-nullclines, dx /dr = 0, and dv/dt = 0 respectively. Then, we obtain v = —x 4 2
for the x-nullcline and v = x? for the y-nullcline. To find intersections, we set —x + 2 = x2, or
(x +2)(x — 1) = 0. Solving this for x yieldsx =1, —2. Forx =1,y = 1,and forx = -2,y = 4.
So the equilibrium points are (1, 1) and (-2, 4).

The solution for (a) is in the left-down region, and therefore, it eventually enters the region where
y < —x 4+ 2 and y < x2. Once the solution enters this region, it stays there because the vector field
on the boundaries never points out. Solutions for (b) and (c) start in this same region. Hence, all
three solutions will go down and to the right without bound.
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Nonlinear systems solutions

4. (a) Equilibria are located where x-nullclines and y-nullclines intersect, so those equilibria with
both x > 0 and v > 0 are located on the intersection of the lines

Ax+By=C and Dx+ Ey=F.

However, the only way that two lines can intersect at more than one point is if they are really
the same line. This happens if

A/D = BJE =C/F.

(b) To guarantee that there is exactly one equilibrium point at which the species coexist, we can
stipulate that the x- and y-intercepts of the x- and y-nullchines are positioned so that these two
lines are forced to intersect in the first quadrant. For example, we could require that the y-
intercept of the x-nullcline, namely C /B, lies below the v-intercept of the v-nullcline, namely
F/E, whereas the opposite happens for the x-intercepts. That is, we could require that

F/E>C/B but F/D <C/A.

Reversing both of these inequalities also guarantees that the species can coexist.
5. (a) The x-nullcline is made up of the lines (h)
x =0and y = —x/3 + 50. The y-

nullcline is made up of the lines y = 0
and y = —2x + 100.

150+

100

~HN :
[ XV‘ 150 I~

(e) Most solutions tend toward one of the equilibrium points (0, 100) or (150, 0). One curve of so-
lutions divides these two behaviors. On this curve, solutions tend toward the saddle equilibrium

at (30, 40).
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7. (a) The x-nullcline consists of the two lines (b)
x =0and y = —x/2 4+ 50. The y-
nullcline consists of the two lines y =0
and y = —x/6 + 25.

+ = x

150

(e) All solutions off the axes tend toward the sink at (75, 25/2). On the x-axis, solutions tend to
the saddle at (100, 0). On the y-axis, solutions tend to the saddle at (0, 25).
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9. (a) The x-nullcline is given by the two lines (b)
x = 0and y = —x + 40. The y-
nullcline is given by the line y = 0 and
the circle x2 + y? = 50°.

¥y y
50 50 ——
R
I 3
& 4 t x * } . i x
50 50

(e) Solutions off the x-axis tend toward the sink at (0, 50). Solutions on the x-axis tend toward the
saddle at (40, 0).

13. (a) The x-nullcline 1s given by the lines (b)
x =0and y = —x + 2. The y-nullcline
is given by the lines y =0 and y = x.

2

(¢) Most solutions tend toward either the sink at (2, 0) or toward infinity in the y-direction (with
x < 1). The curve separating these two behaviors is a curve of solutions that tend toward the
saddle at (1, 1).
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Nonlinear systems solutions

15. (a)

(b)

Since the species are cooperative, an increase in y results in an increase i x and vice versa.
Therefore, one needs to change the signs in front of B and D from — to +.

The x-nullcline is given by x = 0 or —Ax + By + C = 0. The y-nullcline is given by y = 0
or Dx — Ey + F = 0. The origin is always an equilibrium point. Also,x =0,y = F/FE and
x = C/A. y = 0 are equilibrium points. Equilibrium points with both x and y positive arise
from solutions of

—Ax+By+C=0
Dx —Ey+F=0

In matrix notation. we obtain

(5 2)0)-()

In order for a unique solution to exist, AE — BD # 0. Then, the solution is

x\ 1 CE+ BF

v | AE—BD\ CD+ AF
Since A through F are all positive, we must have AE — BD > 0 for the solution to be in the
first quadrant.

If AE — BD = 0, then —Ax + By must be a negative multiple of Dx — E'y, so there are
no solutions with both x and v positive.
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17. (a) For the a-nullcline, da/dt = 0,s02 — ab/2 = 0, or ab = 4. For the b-nullcline, db/dt = 0,
so ab = 3. Both nullclines are hyperbolas, and the curve of ab = 4 is above the one of ab = 3.
Therefore, the direction of vector field on ab = 4 is vertical and downward, and the one on

ab = 3 is horizontal and to the right.

[
=4
W

(b) Below and above ab = 3. db/dr > 0 and db/dr < 0 respectively. Below and above ab = 3,
da/dt > 0 and da/dt < 0 respectively. Therefore, in region A, the vector field points up and
to the right, in region B, the vector field points down and to the right, and in region C, the vector
field points down and to the left.

(¢) On the boundaries of B, the direction of the vector field never points out of B. Therefore, as
time increases, these solutions are asymptotic to the positive x-axis from above.
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