Mathematica Problems
 8 Problems to Illustrate the utility of Mathematica Eric Andow MAT236 February 2014

Problem 1: Solve a Differential Equation (Adapted from Chapter 1.5, \#12)
DSolve[y'[t] ==-y[t]^2, $y, t]$
$\left\{\left\{y \rightarrow\right.\right.$ Function $\left.\left.\left[\{t\}, \frac{1}{t-C[1]}\right]\right\}\right\}$
Problem 2: Solve an Inital Value Problem (Chapter 1 Review, \#30)

$$
\begin{aligned}
& \text { DSolve }\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]=-\mathbf{- 2} \mathbf{t} \mathbf{x}[\mathrm{t}], \mathbf{x}[0]=\mathbf{E}\right\}, \mathbf{x}, \mathrm{t}\right] \\
& \left\{\left\{\mathrm{x} \rightarrow \text { Function }\left[\{\mathrm{t}\}, \mathrm{e} \mathrm{e}^{-\mathrm{t}^{2}}\right]\right\}\right\}
\end{aligned}
$$

Problem 3: Draw a Slope Field for a Differential Equation (Chapter 2 Review, \#23)

Problem 4: Solve a system of Differential Equations (Adapted from Chapter 2.4 \#5)

$$
\begin{aligned}
& \text { DSolve }\left[\left\{\mathbf{x} '[t]=\mathbf{2} \mathbf{x}[t]+\mathbf{y}[t], \mathbf{y}^{\prime}[\mathrm{t}]=-\mathbf{y}[\mathrm{t}]\right\},\{\mathbf{x}, \mathbf{y}\}, \mathrm{t}\right] \\
& \left\{\left\{\mathrm{x} \rightarrow \text { Function }\left[\{\mathrm{t}\}, \mathrm{e}^{2 \mathrm{t}} \mathrm{C}[1]+\frac{1}{3} \mathrm{e}^{-t}\left(-1+\mathbf{e}^{3 t}\right) \mathrm{C}[2]\right], y \rightarrow \text { Function }\left[\{t\}, \mathbb{e}^{-t} \mathrm{C}[2]\right]\right\}\right\}
\end{aligned}
$$

Problem 5: Solve a system of Differential Equations for a given intial value (Adapted from Chapter 2.5 \#3)

$$
\begin{aligned}
& \left\{\left\{x \rightarrow \operatorname{Function}\left[\{t\}, \mathbb{e}^{-2 t}\left(-2+3 \mathbb{e}^{t}\right)\right], y \rightarrow \operatorname{Function}\left[\{t\},-e^{-2 t}\left(-4+3 \mathbb{e}^{t}\right)\right]\right\}\right\}
\end{aligned}
$$

Problem 6: Numerically solve a Differential Equation for a given intial value (Chapter 1 Review \#43)

```
h = NDSolve[{y'[t] == (y[t] - 2) (y[t] + 1-Cos[t]), y[0] == 1.9}, y, {t, 0, 10}]
```

Plot[y[t] /. h, \{t, 0, 10\}]
$\{\{y \rightarrow$ InterpolatingFunction [\{\{0., 10. \}\}, <>] \} \}

Problem 7: Numerically solve a system of Differential Equations (Chapter 2.5 \#5)

```
g = NDSolve[{x'[t] == y[t] + y[t]^2, y'[t] == -x[t] + y[t] / 5- (x[t] *y[t]) + (6/5*y[t]^2),
    x[0] == 1, y[0] == 1},{x,y},{t, 0, 40}]
ParametricPlot[Evaluate[{x[t],y[t]} /. g], {t, 0, 40}]
\(\{\{\mathrm{x} \rightarrow\) InterpolatingFunction \([\{\{0 ., 40\}\},.<>], \mathrm{y} \rightarrow\) InterpolatingFunction \([\{\{0 ., 40\}\},.<>]\}\}\)
```


Problem 8: Solve a Differential Equation you cannot solve analytically (Lacked example I wanted, so made up) DSolve[y'[t] == $y[t] \wedge 2 * t+1, y, t]$

$$
\left\{\left\{y \rightarrow \text { Function }\left[\{t\},-\frac{(-1)^{2 / 3} \operatorname{tAiryBi}\left[(-1)^{1 / 3} t\right]+(-1)^{2 / 3} \operatorname{tAiryAi}\left[(-1)^{1 / 3} t\right] C[1]}{t\left(\operatorname{AiryBiPrime}\left[(-1)^{1 / 3} t\right]+\operatorname{AiryAiPrime}\left[(-1)^{1 / 3} t\right] C[1]\right)}\right]\right\}\right\}
$$

Wikipedia Informs me that this function makes heavy use of the Airy function, which is defined as the solution to $y^{\prime \prime}[t]=y^{*} t$. Since we're in the realm of functions which are created to solve problems, rather than those which are found to solve problems, I imagine this branch of differential equations is beyond the scope of our class.

