
Dominic Pancella 

Food for Thought 
How do you clean a dataset using the pandas library? 
What are the different kinds of joins, and when would you use them? 
How do you filter only the specific subset of rows that you want to analyze? 
Does pandas allow you to pipeline commands? 
What sorts of summary statistics are available in pandas? 
 
Introduction 
I'm going to be looking at two datasets containing basic statistics about the countries of the world. They are 
contained in an Excel file (.xlsx), so the first thing I'm going to do is pull them into Python as pandas dataframe 
objects. That way I can use functions from the pandas library to clean them, merge them, add a couple columns, 
and maybe perform some surface level analysis and observation on them using filters and descriptive statistics. 
 
Step 1: Load the Data 
The Excel file I am using happens to be in the same folder as the Jupyter Notebook I'm writing and testing my 
code in. Therefore I don't have to put anything but the file name as the path parameter (called filename in the xlrd 
module). I can't use the read_excel function from pandas directly because it only supports the .xls extension, which 
was replaced by .xlsx in Excel 2007. A nice workaround is to use the xlrd module in tandem with pandas. 
 
import pandas as pd 
import xlrd 
 
xlsx = xlrd.open_workbook("CSC 357 Week 1 Lesson.xlsx", on_demand=True) 
with pd.ExcelFile(xlsx) as wb: 

basic_info = pd.read_excel(wb, "basic_info") 
birth_death_rates = pd.read_excel(wb, "birth_death_rates") 

 
Step 2: Browse the Data 
Once I have the data loaded into two pandas dataframes, I want to see what each one looks like, and I want to 
begin the process of cleaning them. I can use the head, info, and describe functions to figure out what my data 
looks like. 
 
basic_info.head(5) 
birth_death_rates.head(5) 
 
basic_info.info() 
birth_death_rates.info() 
 
basic_info.describe() 
birth_death_rates.describe() 
 
Step 3: Clean the Data 
The basic_info dataset appears to have no missing or incorrect values in any column. However, the 
birth_death_rates dataset has three fewer values in both the Birth Rate and Death Rate columns than in the Country 
column. If my assumption is correct that there are three countries with missing data, I’d like to get rid of those 
rows outright so they don’t affect my analysis. 
 
birth_death_rates = birth_death_rates.dropna() 
birth_death_rates.info() 
 



Dominic Pancella 

Step 4: Merge the Data 
As it turns out, my assumption was correct: there were indeed three countries with missing values. Fortunately, 
the data was relatively clean to begin with—no weird outliers or inconsistent formatting—so I can move on to 
merging the two datasets together. Because I had to remove some rows from one dataset, I want to perform an 
inner join that will keep only rows that are included in both datasets. (Note that I could have merged them first, 
then cleaned the single merged dataset; the order does not matter here.) 
 
combined_data = pd.merge(basic_info, birth_death_rates, how="inner", on="Country") 
combined_data.head(5) 
combined_data.info() 
 
Step 5: Rename Columns 
Once the data has been merged into a single dataframe, I notice that some column names have spaces in them, so 
I want to rename them accordingly. 
 
combined_data = combined_data.rename(columns = {"GDP (millions)":"GDP_millions"}) 
combined_data = combined_data.rename(columns = {"Birth Rate":"Birth_rate"}) 
combined_data = combined_data.rename(columns = {"Death Rate":"Death_rate"}) 
 
Step 6: Add Columns 
My combined dataset has five columns with numerical values: Population, Area, GDP (millions), Birth Rate, and 
Death Rate. Using common sense, as well as the fact that I was the one who compiled these datasets, leads me to 
believe the units of Area are square miles, the GDP is represented as millions of US dollars, and the birth and 
death rates for each country are expressed per 1,000 people per year. I would like to add columns for population 
density and GDP per capita. 
 
combined_data["Density"] = combined_data.Population / combined_data.Area 
combined_data["GDP_per_capita"] = combined_data.GDP_millions / 
combined_data.Population * 1000000 
 
Step 7: Reorder Columns 
Suppose now that I want to rearrange the columns of my dataframe in a specific order. Mostly, I’m thinking of 
moving the columns that I added—which pandas will automatically place at the right end of a dataframe—closer 
visually to the values from which they were calculated. 
 
combined_data = combined_data[["Country", "Capital", "Region", "Population", "Area", 
"Density", "GDP_millions", "GDP_per_capita", "Birth_rate", "Death_rate"]] 
combined_data.head(5) 
 
Checkpoint 
At this point we have gathered our data, read it into Python as pandas DataFrame objects, cleaned it, and 
transformed it into a single dataset that we can use for analysis. There are several places we can go from here, 
perhaps the most fun of which would be to muse about a potential machine learning scenario where we use this 
data to try and predict the birth and death rates of an unknown country based on region, population density, and 
GDP per capita. 

If we are to proceed with such a scenario—after all, this is a machine learning class—we are not yet done 
altering our dataset. We need to change the region to a numerical variable and split our data into a training set 
and a test set, if such a thing is even possible. 
 
 



Dominic Pancella 

Step 8: Encode Important Categorical Variables as Numeric 
To avoid messing up the nice, clean dataset from above, I will create a new dataframe that we can make more 
changes to while still referring back to the original data. The first change I want to make is to encode the Region 
variable as numeric rather than categorical. 
 
ml_data = combined_data 
labels, uniques = pd.factorize(ml_data.Region) 
ml_data.Region = labels 
ml_data.head(5) 
 
Step 9: Remove Extra Columns 
If we are going to create a machine learning model using only certain columns from our dataset, we need to 
remove the columns we won’t use. In this case, I only want to keep Region, Density, GDP_per_capita, Birth_rate, 
and Death_rate. Since there are two things we are trying to predict, I will actually create two dataframes, one 
containing Birth_rate and one containing Death_rate. 
 
ml_birth_data = ml_data[["Region", "Density", "GDP_per_capita", "Birth_rate"]] 
ml_death_data = ml_data[["Region", "Density", "GDP_per_capita", "Death_rate"]] 
 
Step 10: Split Data into Training and Test Sets 
The next thing we need to do with those two new datasets is split them into training and test sets using the 
train_test_split method from sklearn. From there we will be able to apply machine learning training algorithms to 
them and develop a model to predict the birth and death rates of an unknown country. Using the same value for 
random_state should ensure that we get the same groups of countries in our training and test datasets, which is 
important so that we don’t skew our results. 
 
import numpy as np 
from sklearn.model_selection import train_test_split 
 
birth_train, birth_test = train_test_split(ml_birth_data, test_size=0.2, 
random_state=42) 
death_train, death_test = train_test_split(ml_death_data, test_size=0.2, 
random_state=42) 
 
Conclusion 
The pandas library is an incredibly useful tool for data wrangling in all forms. It works with a great variety of file 
formats including CSV, JSON, HTML, and XLS to store data into a user-friendly format. Its built-in functions 
allow users to do pretty much anything from adding a calculated column to filling in missing values to converting 
back and forth between rows and columns in order to get their data in the shape they want. 
 
Resources 
Pandas cheat sheet: https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf 
User guide to pandas: https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html 
Collection of pandas tutorials: https://pandas.pydata.org/pandas-docs/stable/getting_started/tutorials.html 

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/tutorials.html

