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· SGDClassifier is a linear classifier which implements regularized linear models with stochastic gradient descent (SGD) learning.
· Precision: accuracy of the positive predictions. (precision = TP/(TP+FP))
· Recall: also called sensitivity or true positive rate, this is the ratio of positive instances that are correctly detected by the classifier. (recall = TP/(TP+FN))
· [image: ]
 
· Precision/recall tradeoff
· [image: ]
· How SGDClassifier makes its classification decisions. It computes a score based on a decision function, and if that score is greater than a threshold, it assigns the instance to the positive class, or else it assigns it to the negative class. 
1. The decision threshold is positioned at the central arrow: you will find 4 true positive (actual 5s) on the right of that threshold, and one false positive (actually a 6). 
Precision = 80%
But out of 6 actual 5s, the classifier only detects 4.
Recall = 67%
1. Raise the threshold, move it to the right.
The false positive (the 6) becomes a true negative.
Precision = 100%
Bit one true positive becomes a false negative.
Recall = 50%
……
 
· You can call decision_function() method, which returns a score for each instance, and then make predictions based on those scores using any threshold you want:
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· How can you decide which threshold to use?
1. Get the scores of all instances in the training set using the cross_val_predict() function again:
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1. Compute precision and recall for all possible thresholds using the precision_recall_curve() function:
[image: ]
1. Plot precision and recall as functions of the threshold value using Matplotlib:
[image: ]
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Other methods:
Plot precision directly against recall:
[image: ]
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def plot_precision_recall vs_threshold(precisions, recalls, thresholds):
plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
plt.xlabel("Threshold")
plt.legend(loc="upper left")
plt.ylim([0, 1])

plot_precision_recall vs_threshold(precisions, recalls, thresholds)
plt.show()
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Figure 3-4. Precision and recall versus the decision threshold
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Figure 3-5. Precision versus recall
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Figure 3-2. An illustrated confusion matrix
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Figure 3-3. Decision threshold and precision/recall tradeoff
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>>> y_scores = sgd_clf.decision_function([some_digit])
>>> y_scores

array([ 161855.74572176])

>>> threshold = 0

>>> y_some_digit_pred = (y_scores > threshold)
array([ True], dtype=bool)
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y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
method="decision_function")
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from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall curve(y_train_5, y_scores)




