[bookmark: _GoBack]DAY7 Ben, Bram, Kaiyu, Qingyuan, Yuzhe
· SGDClassifier is a linear classifier which implements regularized linear models with stochastic gradient descent (SGD) learning.
· Precision: accuracy of the positive predictions. (precision = TP/(TP+FP))
· Recall: also called sensitivity or true positive rate, this is the ratio of positive instances that are correctly detected by the classifier. (recall = TP/(TP+FN))
· [image:]

· Precision/recall tradeoff
· [image:]
· How SGDClassifier makes its classification decisions. It computes a score based on a decision function, and if that score is greater than a threshold, it assigns the instance to the positive class, or else it assigns it to the negative class.
1. The decision threshold is positioned at the central arrow: you will find 4 true positive (actual 5s) on the right of that threshold, and one false positive (actually a 6).
Precision = 80%
But out of 6 actual 5s, the classifier only detects 4.
Recall = 67%
1. Raise the threshold, move it to the right.
The false positive (the 6) becomes a true negative.
Precision = 100%
Bit one true positive becomes a false negative.
Recall = 50%
……

· You can call decision_function() method, which returns a score for each instance, and then make predictions based on those scores using any threshold you want:
[image:]

· How can you decide which threshold to use?
1. Get the scores of all instances in the training set using the cross_val_predict() function again:
[image:]
1. Compute precision and recall for all possible thresholds using the precision_recall_curve() function:
[image:]
1. Plot precision and recall as functions of the threshold value using Matplotlib:
[image:]

[image:]
Other methods:
Plot precision directly against recall:
[image:]

image6.png
def plot_precision_recall vs_threshold(precisions, recalls, thresholds):
plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
plt.xlabel("Threshold")
plt.legend(loc="upper left")
plt.ylim([0, 1])

plot_precision_recall vs_threshold(precisions, recalls, thresholds)
plt.show()

image7.png
1.0

0.8

0.6

0.4

0.2

0.0

-~ Precision
— Recall

—600000

—-400000 —200000 0 200000 400000 600000
Threshold

Figure 3-4. Precision and recall versus the decision threshold

image8.png
Precision

@
=

1.0

0.8

o
el

0.2

L

0.2

0.4 0.6
Recall

Figure 3-5. Precision versus recall

0.8

10

image1.png
Predicted

Negative Positive

{FP)

()

el & R 7

¢

Actual

Precision

Recal
(e.g., 3 out of 5)

(e.g., 3out of 4)
55%)|
;’_ ™)

4

Figure 3-2. An illustrated confusion matrix

image2.png
Precision: 6/8 = 75% 4/5=80% 3/3 = 100%
Recall: 6/6 = 100% 4/6 =67% 3/6 = 50%

F3+R752 ‘r’é $55

Scaore
Negative predictions 7 Positive predictions

Various thresholds

Figure 3-3. Decision threshold and precision/recall tradeoff

image3.png
>>> y_scores = sgd_clf.decision_function([some_digit])
>>> y_scores

array([161855.74572176])

>>> threshold = 0

>>> y_some_digit_pred = (y_scores > threshold)
array([True], dtype=bool)

image4.png
y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
method="decision_function")

image5.png
from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall curve(y_train_5, y_scores)

