
Dominic Pancella
Food for Thought
● How does a linear regression algorithm work?
● What is the difference between Pearson’s

correlation coefficient and other types of
correlation coefficients?

● Is it possible to accurately predict the birth and
death rates of a country given other information
about it?

● Are other supervised algorithms, such as random
forest regressors, more efficient and/or more
accurate than linear regression?

● What is the relationship, if any, between GDP per
capita and birth rate?

Introduction
I will be working with a pre-cleaned version of the countries of the world dataset I used in last week’s lesson. It
contains information about population, area, GDP, birth and death rates, and region for 195 countries. I would
like to use a linear regression model to predict the birth rate and the death rate of an unknown country,
specifically of the three countries for which that data was absent originally.

Step 1: Load the Data
This may seem trivial, but it is always important before starting a machine learning project to make sure you
have the data you want in the format you want. Here, I again have an Excel spreadsheet in the same folder as
the Jupyter notebook in which I’m writing this code, so I can pull it in using xlrd and reformat it using pandas.
(I’m also importing the numpy library because I’ll most likely have to use it later.) This time, I use the head
function from pandas mostly to make sure the data is in the format I want.

import​ pandas ​as​ pd
import​ numpy ​as​ np
import​ xlrd

xlsx = xlrd.open_workbook(​"CSC 357 Week 2 Lesson.xlsx"​, on_demand=​True​)
with​ pd.ExcelFile(xlsx) ​as​ wb:
 df = pd.read_excel(wb, ​"info"​)

df.head(​5​)

Step 2: Remove Unnecessary Columns
I’m actually going to be creating two different models, one to predict birth rate and one for death rate. In both
cases I want to remove the remaining categorical variables, as well as the column containing values I want to
predict using the ​other​ model. (While there might be some sort of relationship between birth rate and death
rate, I’m assuming that neither value will be known.) I can do this two ways, but since I want to keep the
majority of the columns, the more efficient method uses the drop function from pandas.

birth_data = df.drop(columns = [​"Country"​, ​"Capital"​, ​"Death_rate"​])
death_data = df.drop(columns = [​"Country"​, ​"Capital"​, ​"Birth_rate"​])
birth_data.head(​5​)
death_data.head(​5​)

Dominic Pancella
Step 3: Create a Training Set and Test Set
Before we train a model, we need to separate our datasets into two groups: data with which to train the model
and data with which to test it. We have no idea at the moment which of our variables will correlate most with
birth rate or death rate, so we can simply sample countries randomly instead of using stratified sampling.
Fortunately there is a method in the model_selection module in sklearn that we can use to split our data
without much hassle.

from​ sklearn.model_selection ​import​ train_test_split
birth_train, birth_test = train_test_split(birth_data, test_size=​0.2​, random_state=​42​)
death_train, death_test = train_test_split(death_data, test_size=​0.2​, random_state=​42​)

Step 4: Look for Correlations
We want to know which variables in our dataset are more likely to be correlated with birth rate and death rate.
The easiest way to figure this out is to use the corr method from pandas to compute a correlation matrix for all
variables, then to extract just the column with relevant values.

birth_corr_matrix = birth_train.corr()
birth_corr_matrix[​"Birth_rate"​].sort_values(ascending=​False​)
death_corr_matrix = death_train.corr()
death_corr_matrix[​"Death_rate"​].sort_values(ascending=​False​)

Step 5: Separate the Labels
For any prediction algorithm, it is important to separate the values we want to predict (also called ​labels​) from
the values we will use to predict them. We can use the pandas library to copy the birth rate and death rate
column into label variables and drop the corresponding columns from our datasets.

birth_train_labels = birth_train[​"Birth_rate"​].copy()
birth_train = birth_train.drop(​"Birth_rate"​, axis=​1​)
death_train_labels = death_train[​"Death_rate"​].copy()
death_train = death_train.drop(​"Death_rate"​, axis=​1​)

Step 6: Scale the Data
It turns out that most machine learning algorithms perform best when all the data is on the same scale. So in
reality, our data was not as clean as we thought it was at the beginning, since we have columns like population
which range from a few thousand to over a billion, as well as the region columns which only contain 0 and 1.
We can use the StandardScaler class from sklearn to standardize the values of all of our variables.

from​ sklearn.preprocessing ​import​ StandardScaler
scaler = StandardScaler()
birth_train = pd.DataFrame(scaler.fit_transform(birth_train))
death_train = pd.DataFrame(scaler.fit_transform(death_train))
birth_train.columns = [​"Africa"​, ​"Asia"​, ​"C_America"​, ​"Europe"​, ​"N_America"​,

 ​"Oceania"​, ​"S_America"​, ​"Population"​, ​"Area"​, ​"Density"​,
 ​"GDP_millions"​, ​"GDP_per_capita"​]

death_train.columns = [​"Africa"​, ​"Asia"​, ​"C_America"​, ​"Europe"​, ​"N_America"​,
 ​"Oceania"​, ​"S_America"​, ​"Population"​, ​"Area"​, ​"Density"​,
 ​"GDP_millions"​, ​"GDP_per_capita"​]

birth_train.head(​5​)
death_train.head(​5​)

Dominic Pancella
Step 7: Train a Linear Regression Model
Finally, all of the data is in the shape we want, so we can begin to use it for training. As with so many other
machine learning tasks, the things we need to import come from the sklearn library.

from​ sklearn.linear_model ​import​ LinearRegression
lin_reg = LinearRegression()
birth_lr = lin_reg.fit(birth_train, birth_train_labels)
death_lr = lin_reg.fit(death_train, death_train_labels)

Step 8: Evaluate the Model
It’s super easy to train a model when the sklearn library already has predefined classes and methods for so
many different algorithms. But perhaps more important than training the model is measuring whether the
model works well. A fairly standard performance measurement for linear regression algorithms is the root
mean squared error (RMSE), which takes the vertical distance from each point to the fitted line, squares them
so they’re all positive, adds them together, averages them, and takes the square root of that final quantity. We
can find a method to calculate mean squared error (MSE) in the metrics module of sklearn, and we can derive
RMSE from there.

from​ sklearn.metrics ​import​ mean_squared_error
birth_pred = birth_lr.predict(birth_train)
birth_mse = mean_squared_error(birth_train_labels, birth_pred)
birth_rmse = np.sqrt(birth_mse)
death_pred = death_lr.predict(death_train)
death_mse = mean_squared_error(death_train_labels, death_pred)
death_rmse = np.sqrt(death_mse)
print(​"RMSE for Birth Rate: "​, birth_rmse, ​"\nRMSE for Death Rate: "​, death_rmse)

Conclusion
The result of training a linear regression algorithm on this dataset is an RMSE of about 15.2 for birth rate
(which ranges from 6.5 to 43.7 in the full dataset) and about 2.1 for death rate (which ranges from 1.6 to 15.1).
There are probably several ways to improve these results: if region is important, we could classify countries
into more than seven regions; we could gather more data on a different variable such as healthcare spending
per capita; we could use a different type of algorithm, such as a decision tree regression algorithm; and we
could use a grid search to find the optimal combination of hyperparameters.

Notes

● Keep in mind that not only is linear regression the simplest machine learning algorithm because it is
one of the only ones with a closed form equation we can calculate by hand, but I used a small, relatively
simple dataset. More data and more complex algorithms will generally lead to better results.

● I didn’t evaluate the performance of the final linear regression algorithm on the test data, only the
training data. It’s entirely possible that the RMSE scores for the test data could be completely different.

Resources
Most of this code is adapted from the Jupyter notebook for Chapter 2 of our textbook, which can be accessed
here: ​https://github.com/ageron/handson-ml/raw/master/02_end_to_end_machine_learning_project.ipynb
Documentation for the LinearRegression class:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
More on linear regression algorithms:
https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a

https://github.com/ageron/handson-ml/blob/master/02_end_to_end_machine_learning_project.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a

